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Abstract : Drought or moisture stress is one of the
most significant environmental stresses causing huge
loss to the agriculture worldwide. Vegetables are more
sensitive to drought as compare to many other crops.
Improving yield under drought is a major goal of plant
breeding. An understanding of genetic basis of drought
tolerance is a pre-requisite for plant breeders to evolve
superior genotype through conventional breeding
methodology. Drought is often accompanied by relatively
high temperatures, which promote evapotranspiration
and affects photosynthetic kinetics, thus intensifying the
effects of drought and further reducing crop yields.
Traditionally, plant breeders have addressed the problem
of environmental stress by selecting for suitability of
performance over a series of environmental conditions
using extensive testing and biometrical approaches.
Progress requires the introduction of traits that reduce
the gap between yield potential and actual yield in
drought-prone environments. An attempt has been made
in this review to compile the scattered information on
concepts, genetics, and traditional breeding approaches
of drought tolerance with suitable illustrations. A
comprehensive list of genes responsible for drought and
examples of species and genotypes of vegetables with
drought tolerance has also been provided.

Introduction

Moisture stress is one of the greatest environmental
factors in reducing yield in the arid and semi-arid tropics.
From agricultural point of view, its working definition
would be the inadequacy of water availability, including
precipitation and soil moisture storage capacity, in
quantity and distribution during the life cycle of a crop
plant that restricts the expression of full genetic potential
of the plant (Sinha, 1986). The ability of a plant to
produce its economic product with minimum loss under
water deficit environment in relation to the water-
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constraint-free management is referred as drought
tolerance (Mitra, 2001). In other words, drought can be
described as a climatic hazard which implies the absence
or very low level of rainfall for a period of time, long
enough to cause moisture depletion in soil with a decline
of water potential in plant tissues. Drought is often
accompanied by relatively high temperatures, which
promote evapotranspiration and affects photosynthetic
kinetics, thus intensifying the effects of drought and
further reducing crop yields (Mir et al., 2012). Drought
stress is the major abiotic stress for many Indian states
viz. Rajasthan, parts of Gujarat, Haryana and Andhra
Pradesh (Mitra, 2001). About two thirds of the
geographic area of India receives low rainfall (less than
1000 mm), which is also characterized by uneven and
erratic distributions. Out of net sown area of 140 million
hectares about 68 % is reported to be vulnerable to
drought conditions and about 50 % of such vulnerable
area is classified as ‘severe’, where frequency of drought
is almost regular  (http://www.dsc.nrsc.gov.in/). Being
succulent in nature, most of the vegetable crops are
sensitive to drought stress, particularly during flowering
to seed development stage. Moreover, the legume
vegetables, for instance cowpea, vegetable pea, Indian
beans etc., grown in arid and semi-arid regions are
generally affected by drought at the reproductive stage.
Cullis (1991) opined that a perceptive of how the
interaction of physico-chemical environment reduces
plant development and yield will pave the ways for a
combination of breeding methods for plant modification
to improve tolerance against environmental stresses.
Drought stress modifies photosynthetic rate, relative
water content, leaf water potential, and stomatal
conductance. Ultimately, it destabilizes the membrane
structure and permeability, protein structure and function,
leading to cell death (Bhardwaj and Yadav, 2012).

Several physiological and biochemical processes
essential for plant growth and development are
significantly affected by drought stress, and plant
develops various defense mechanisms against moisture
stress at the molecular, cellular and whole plant levels.
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An understanding of genetic basis of drought tolerance
in vegetables is a pre-requisite for plant breeders to
evolve superior genotype by adopting conventional
breeding methodology. In view of the fact that there is
no single mechanism by which stress can be alleviated,
this paper shall concentrate on water stress, mainly in
terms of drought. Attempt has been made to discuss
the concept of drought tolerance, the adaptive
mechanisms, traits conferring drought tolerance, and
their use in conventional/traditional breeding activities
for vegetable improvement.

The concept and mechanism of drought tolerance

Drought is a sustained period of time without significant
rainfall (Linsley et al., 1959). Whereas, Quizenberry
(1982) suggested that such rainfall deficit does not
constitute drought in a crop production system until
the water scarcity begins to limit the growth and
development of crop plants.

At genetic level, the adaptive mechanisms by which
plants survive drought, collectively referred to drought
tolerance (Jones et al., 1980), can be grouped into three
categories, viz. drought escape, drought avoidance and
drought tolerance (Fig. 1) (Leonardis et al. 2012).
However, crop plants make use of more than one
mechanism at a time to tolerate drought (Gaff, 1980).

1. Drought escape: The ability of a crop plant to
complete its life cycle before development of serious
soil and plant water deficits is called as drought escape.
This mechanism involves rapid phenological
development i.e. early flowering and maturity, variation
in duration of growth period depending on the extent of
water scarcity. For instance, in cow pea early erect
cultivars, such as ‘Ein El Gazal’ and ‘Melakh’, have
performed well when the rainfall season was short but
distinct due to their ability to escape late-season drought
(Hall, 2004).

2. Drought avoidance: It refers to the ability of a crop
to endure periods without significant rainfall even as
maintaining a high plant status at high plant water
potential, i.e., dehydration postponement or drought
avoidance (Krammer, 1980). In other way, drought
avoidance is the ability of plants to maintain relatively
high tissue water potential despite a shortage of soil-
moisture. Improving the mechanisms of water uptake,
storing in plant cell and reducing water loss confer
drought avoidance. Drought avoidance mechanisms are
associated with physiological whole-plant mechanisms
such as canopy tolerance and leaf area reduction (which
decrease radiation, adsorption and transpiration),
stomatal closure and cuticular wax formation, and

adjustments of sink-source relationships through altering
root depth and density, root hair development and root
hydraulic conductance (Beard and Sifers 1997; Rivero
et al. 2007).

3. Drought tolerance: The ability of a crop to endure
moisture deficits at low tissue water potential or
dehydration tolerance (Levitt, 1972). Under drought
condition, plants survive through a balancing act
between maintenance of turgor with reduction of water
loss (Begg and Turner, 1976). Drought tolerance
mechanisms are balancing of turgor through osmotic
adjustment (solute accumulation in cell), increase in
elasticity in cell but decrease in cell size and desiccation
tolerance by protoplasmic tolerance (Ugherughe, 1986).
In an in-vitro study of tomato, cv. PS-10 showed low
osmotic potential at all polyethylene glycol (PEG),
treatments and thus it turned to be a better drought
tolerant cultivar than Roma while cv. Peto and Nora
showed average drought tolerance (Aazami et al.,
2010).

Most of drought adaptations have disadvantages as the
genotypes of short duration are less productive
compared to that of normal duration. The drought
tolerance mechanisms conferred by reducing water loss
(such as stomatal closure and reduced leaf area) usually
result in reduction of assimilation of carbon dioxide
(Mitra, 2001). Drought tolerance can be increased
through osmotic adjustment by maintaining plant turgor,
but the increased solute concentration responsible for
osmotic adjustment may have detrimental effect in
addition to energy requirement for osmotic regulation
(Turner, 1979). Therefore, crop adaptations to drought
may be established through a balance between escape,
avoidance and tolerance while maintaining adequate
productivity.

Fig. 1: Response mechanism of drought stress (modified
from Leonardis et al., 2012)
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Genetic mechanism for drought tolerance

Drought tolerance is a complex character, expression
of which depends on accomplishment and interaction
of various morphological traits viz. earliness, reduced
leaf area, leaf molding, wax content, efficient rooting
system, stability in yield and number of branches;
physiological traits i.e. transpiration, water-use
efficiency, stomatal activity and osmotic adjustment and
biochemical traits i.e. accumulation of proline,
polyamine, trehalose etc., increasing of  nitrate reductase
activity and storage of carbohydrate. Very little is known
about the genetic mechanisms that have room for these
characters.

The identification, inheritance and action of genes
responsible for morphological and physiological traits
in some crops have been reported. Root characters are
inherited polygenically (Ekanayake et al., 1985) where
the dominant alleles govern long and more numbers of
roots while, thick root tip is governed by recessive alleles
(Gaff, 1980). Leaf molding (Turner, 1979) and osmotic
adjustment (O’Toole and Moya, 1978) have revealed
monogenic inheritance. In cowpea, drought tolerance
is reported to be governed by a single dominant gene
(Mai Kodomi et al., 1999). Besides morphological and
physiological changes, biochemical changes involving
biosynthesis of compatible solute is another way to
impart drought. Under drought stress, plants tends to
maintain water content by accumulating various
compatible solutes that are non-toxic and do not interfere
with plant processes. This includes fructan, trehalose,
polyols, glycine betaine, proline and polyamines (Mitra,
2001). The various genes responsible for different
enzymes involved in biosynthesis of these solutes have
been recognized and cloned from different organisms
i.e. bacteria, yeast, human and plants. Many stress
related genes (Table 1) have been isolated and
characterized in the last two decades in a variety of
crop species.

Among the horticultural traits, although number of pods
per plant had shown good narrow sense heritability and
genetic advance under drought, yet leaf water potential
appeared to be better indicator for selection criteria
owning to higher heritability under drought stress in
okra (Ben-Ahmad et al., 2006, Naveed et al., 2009).
Thus, chances to find stress tolerant material in
segregating populations having high heritability and
genetic advance may be higher. Rauf and Sadaqat (2008)
reported significant positive relationship of physiological
traits with yield in sunflower. Similarly in wheat studies
on narrow-sense heritability for excised leaf water
losses, relative water content and biomass concluded
that high genetic advance for relative water content and

excised leaf water loss may be used for direct selection
(Farshadfar et al., 2001).

Ahmad et al. (2009) found that in cotton additive,
dominance and interactions were involved for agronomic
(plant height, number of monopodial branches per plant,
number of sympodial branches per plant, number of
bolls per plant, boll weight, ginning out-turn), fiber
quality (staple length, fiber strength, fiber fineness) and
physiological traits (relative water content & excised
leaf water loss) under drought stress environments.

Screening for drought tolerance

The diversity among the genotypes may serve as primary
source for screening against drought stress. Drought
tolerance is the interactive result of diverse
morphological, physiological and biochemical traits and
thus, these components could be used as strong selection
criteria to screen out appropriate plant ideotype.
Implications of developing an effective screening
procedure for drought tolerance have been realized
utilizing different procedures (Table 2). Traditionally,
plant breeders have addressed the problem of
environmental stress by selecting for suitability of
performance over a series of environmental conditions
using extensive testing and biometrical approaches
(Blum, 1988).

Water stress, mostly at critical period of growth may
drastically reduce productivity and quality of vegetables
(Table 3). Singh and Sarkar (1991) stated that a
combination of different traits of direct relevance, rather
than a single trait, should be used as selection criteria
for drought stress. A corresponding experiment including
46 sugar beet genotypes representing different genetic
backgrounds grown in drought and irrigated conditions
led to similar results (Ober et al., 2004). Sugar beet
genotypes with high yielding capacity when irrigated
also tended to perform well under drought and vice
versa.

At seedling stage in vitro application of PEG is
commonly used to stimulate osmotic stress effects in
petridishes to control water potential in seed germination.
A culture medium supplemented with PEG resulted in
highest proline accumulation in tomato cv. Roma
(Aazami et al., 2010). A drought tolerant tomato line
(IIHR-2274) was identified (Chavan, 2007) on the basis
of number of fruits under different moisture stress
regime i.e. imposing drought after two weeks of
transplanting to 11 genotypes with two treatments [depth
of irrigation (IW)/ cumulative pan evaporation (CPE)
ratio of 0.40 and 1.20] at different phenological stages
viz. 45, 75 days after transplanting and at harvesting
stage (Fig. 2). The quantity of water to be irrigated
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Table 1. Genes conferring drought tolerance and their salient features

Modified from Cattivelli et al. (2008)

Genes  Function  Mechanism of action  References  
DREBs/CBFs; 
ABF3  

Stress induced transcription factors  Enhanced expression of downstream stress 
related genes confers drought/cold/salt tolerance. 
Constitutively overexpression can  lead to 
stunting growth  

Oh et al. (2005),  
Ito et al. (2006)  

SNAC1  Stress induced transcription factor  SNAC1 expression reduces water loss  
increasing stomatal sensitivity to ABA  

Hu et al. (2006)  

OsCDPK7  Stress induced Ca-dependent  
protein kinase  

Enhanced expression of stress responsive genes  Saijo et al. (2000)  

Farnesyl-transferase 
(ERA1)  

Negative-regulator of ABA sensing  Down-regulation of farnesyltransferase  
enhances the plant’s response to ABA and 
drought tolerance reducing stomatal conductance  

Wang et al. (2005)  

Mn-SOD  Mn-superoxide dismutase  Overexpression improves stress tolerance  also 
in field conditions  

McKersie et al. (1996)  

AVP1  Vacuolar H+ - pyrophosphatase   Overexpression facilitate auxin fluxes leading to 
increased root growth  

Gaxiola et al. (2001), 
Park et al. (2005)  

HVA1; OsLEA3  Stress induced LEA proteins  Over-accumulation of LEA increases drought 
tolerance also in field conditions  

Bahieldin et al. 
(2005), Xiao et al. 
(2007)  

ERECTA  A putative leucine-rich repeat receptor-
like kinase is a major  contributor to a 
locus for D on Arabidopsis chromosome 
2  

ERECTA acts as a regulator of transpiration 
efficiency with effects on stomatal density, 
epidermal cell expansion, mesophyll cell 
proliferation and cell–cell contact  

Masle et al. (2005)  

otsA and otsB  Escherichia coli trehalose  
biosynthetic genes  

Increased trehalose accumulation correlates with 
higher soluble carbohydrate levels, elevated 
photosynthetic capacity and increased tolerance 
to photo-oxidative damage  

Garg et al. (2002)  

P5CS  d-Pyrroline-5-carboxylate synthetase  Enhanced accumulation of proline leads to 
increased osmotolerance  

Kavi Kishor et al. 
(1995), Zhu et al. 
(1998)  

mtlD  Mannitol-1-phosphate dehydrogenase  Mannitol accumulation leads to increased 
osmotolerance  

Abebe et al. (2003)  

GF14l  14-3-3 protein  Lines overexpressing GF14l have a ‘‘stay 
green’’ phenotype, improved water stress 
tolerance and higher photosynthetic rates under 
water deficit conditions  

Yan et al. (2004)  

NADP-Me  NADP-malic enzyme  The overexpression decreased stomatal 
conductance and improves WUE  

Laporte et al. (2002)  

AREB bZIP transcription factor in tomato Overexpression increasing dehydrin expression. Hsieh et al. (2010) 
cupida Leaf necrosis in tomato Overwilting or stomatal defect Anonymous (2006) 
dehydrin Increased distances from dehydrins 

activated by abscisic acid in tomato 
Probably the dehydrins protect membranes 
during stresses. Dehydrins are upregulated by 
abscisic acid. 

Weiss and Cortines 
(2010) 

Chloroplast drought-
induced stress 
protein 

Thiol-disulfide exchange intermediate 
activity in potato 

Preservation of the thiol: disulfide redox 
potential of chloroplastic proteins during water 
deficit. 

Anonymous (2006) 

CDSP 32 Thiol-disulfide exchange intermediate 
activity in potato 

Preserve chloroplastic structures against 
oxidative injury upon drought. 

Anonymous (2006) 

CDSP 34  Increases in CDSP 34 transcript and 
protein abundances were also observed in 
potato plants subjected to high 
illumination. 

The CDSP 34 protein is proposed to play a 
structural role in stabilizing stromal lamellae 
thylakoids upon osmotic or oxidative stress. 
 

Beyly  et al. (1998) 

Wilty Dominant TGRC gene in tomato Leaves overwilt when drought stressed. Wilting 
under field or greenhouse conditions; marginal 
leaf narcrosis. 

Anonymous (2006) 

Wilty dwarf Recessive TGRC gene in tomato Grayish-green, droopy leaves; stunted plants; 
leaves droop when drought stressed. 

Anonymous (2006) 

Water stress-
induced ER5 protein 

Stress induced CaLEA6  (for Capsicum 
annuum LEA)  is 709 bp long with an 
open reading frame encoding 164 amino 
acids 

Predicted to produce a highly hydrophobic, but 
cytoplasmic, protein. 

Kim et al. (2005) 

Abscicic acid stress 
ripening 2 

Putative DNA binding and chaperon like 
activity 

A member of the Asr gene family. It is induced 
by abiotic stress such as water and is expressed 
in the leaf phloem companion cells.  

Giombini et al. (2009) 
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Table 2. Screening procedure for drought tolerance

Table 3: Critical stages of drought stress and its impact on vegetable crops

Modified from Bahadur et al. (2011)

Vegetable crops Critical period for watering Impact of water stress  
Tomato  Early flowering, fruit set, and 

enlargement 
Flower shedding, lack of fertilization, reduced fruit size, fruit splitting, 
puffiness and development of calcium deficient disorder i.e. blossom end rot 
(BER), poor seed viability 

Brinjal Flowering and fruit 
development  

Reduces yield with poor colour development in fruits, poor seed viability  

Chilli and Capsicum  Flowering and fruit set  Shedding of flowers and young fruits, reduction in dry matter production and 
nutrient uptake, poor seed viability 

Potato  Tuberization and tuber 
enlargement  

Poor tuber growth and yield, splitting, internal brown spot  

Okra  Flowering and pod development  Considerable yield loss, development of fibres, high infestation of mites, poor 
seed viability 

Cauliflower, cabbage 
and broccoli 

Head/ curd formation and 
enlargement  

Tip burning and splitting of head in cabbage; browning and buttoning in 
cauliflower  

Carrot, radish and 
turnip  

Root enlargement  Distorted, rough and poor growth of roots, strong and pungent odour in carrot, 
accumulation of harmful nitrates in roots 

Onion  Bulb formation and enlargement  Splitting and doubling of bulb, poor storage life  
Cucumber  Flowering as well as throughout 

fruit development  
Deformed and non-viable pollen grains, bitterness and deformity in fruits, poor 
seed viability 

Melons  Flowering and evenly 
throughout  
fruit development  

Poor fruit quality in muskmelon due to decrease in TSS, reducing sugar and 
ascorbic acid, increase nitrate content in watermelon fruit, poor seed viability  

Summer squash  Bud development and flowering Deformed and non-viable pollen grains, misshapen fruits 
Leafy vegetables  Throughout growth and 

development  
of plant  

Toughness of leaves, poor foliage growth, accumulation of nitrates  

Asparagus Spear production and fern 
(foliage) development 

Reduce spear quality through reduced spear size and increased fibre content, 
leading to tougher, lower grade spears. 

Lettuce  Consistently throughout 
development  

Toughness of leaves, poor plant growth, tip burning  

Vegetable pea  Flowering and pod filling  Reduction in root nodulation and plant growth, poor pod filling, poor seed 
viability 

Lima bean Pollination and pod 
development 

Leaf color takes on a slight grayish cast, blossom drop, poor seed viability 

Snap bean Flowering and pod enlargement Blossoms drop with inadequate moisture levels and pods fail to fill, poor seed 
viability 

Sweet corn Silking, tasseling and ear 
development 

Crop may tassel and shed pollen before silks on ears are ready for pollination, 
lack of pollination may result in missing rows of kernels, reduced yields, or 
even eliminate ear production, poor seed viability 

Sweet potato Root enlargement Reduced root enlargement with poor yield, growth crack 
 

S. No. Instruments/ techniques used Screening for the purpose of References 
1 Infrared thermometry Efficient water uptake Blum et al., 1982 
2 Banding herbicide metribuzin at a certain 

depth of soil, and use of iodine-131 and 
hydroponic culture under stress of 15 bar 

Root growth Robertson et al., 1985; 
Ugherughe, 1986 

3 Adaptation of psychometric procedure Evaluation of osmotic Morgan, 1980; 1983 
4 Diffusion porometry technique Leaf water conductance Gay, 1986 
5 Mini-rhizotron technique Root penetration, distribution and density in the field Bohm, 1974 
6 Infrared aerial photography Dehydration postponement Blum et al., 1978 
7 Carbon isotope discrimination Increased water-use efficiency Farquhar and Richards, 1984 
8 Drought index measurement Total yield and number of fruits Clarke et al., 1984; 

Ndunguru et al., 1995 
9 Visual scoring or measurement Maturity, leaf molding, leaf length, angle, orientation, 

root morphology and other morphological characters 
Mitra, 2001 

 

through furrow was measured with the help of V-notch
installed at plot head. Accordingly the measured quantity
of water was applied to the plots as per the irrigation
schedules. It was applied based on IW/CPE ratio, where
in IW was maintained constantly at 50 mm. Soon after

reaching the particular ratio based on the CPE, irrigation
was given to particular treatment. In 0.40 IW/CPE ratio
treatment crop was irrigated for every 125 mm of CPE
where as in 1.20 IW/CPE ratio irrigation was given for
every 41.66 mm of CPE.
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Sources of drought stress tolerant vegetables

Potential sources of drought tolerance species and
genotypes of major vegetable crops have been identified
in many of the vegetable crops (Table 4). In tomato,
water stresses during vegetative growth and later stages
have been identified among accessions of the wild
species Solanum chilense and S. pennellii (Rai et al.,
2011). The physiological basis of drought tolerance in
S. chilense was attributed to its deep vigorous root
system, similar to those reported for cultivar Red Rock
(Stoner, 1972) and a few accessions of S.
pimpinellifolium (Rana and Kalloo 1989). In contrast
to these, the drought tolerant accession LA716 (S.
pennellii) has a limited and shallow root system and the
basis for its drought tolerance is largely due to the ability
to conserve moisture in succulent leaves during periods
of inadequate moisture. LA716 has also been
characterized as having a greater water use efficiency
(WUE) under drought stress than S. esculentum, as
measured by g dry weight (DW) produced per kilogram
of water consumed (Martin and Thorstenson, 1988). A
high WUE in this accession was attributed to smaller
leaf conductance due to fewer and smaller stomata,
longer trichomes, lower chlorophyll content and Rubisco
activity per unit leaf area, and larger mesophyll cell
surface exposed to intercellular air space (Martin et al.,
1999). In tomato, most of the commercial cultivars are
sensitive to drought stress throughout the ontogeny of
the plant, yet genotypic variation for drought tolerance
exists within the cultivated (Wudiri and Henderson 1985)
and related wild species such as S. cheesmanii, L.
chilense, S. pennellii, S. pimpinellifolium, and S.
esculentum var. cerasiforme (Pillay and Beyl, 1990).
Evaluation of 150 lines of cultivated and wild species of

tomato under water-deficit conditions identified a few
S. esculentum genotypes and a few accessions of S.
pimpinellifolium and S. chilense with drought tolerance
attributes (Rana and Kalloo, 1990).

A potential source of drought stress-tolerant traits in
Phaseolus vulgaris  has been reported through
interspecific hybridization with P. acutifolius (Lazcano-
Ferrat and Louatt, 1999).  P. acutifolius possesses both
morphological and physiological characteristics that
enable it to complete well its life cycle and yield under
hot arid conditions. However, progress in the
development of tolerant lines is slow due to the lack of
simple traits associated with drought tolerance.
Therefore, it is important to identify the characteristic
traits associated with pod setting, the number of pods
reaching maturity, and the seed yield with the purpose
to use as a marker to screen germplasm with drought
tolerance (Omae et al., 2005). Trehalose played a role
in drought tolerance of rhizobia/legume symbioses,
particularly in common beans. Nodulated plants that
accumulate only small amounts of trehalose were poor
drought-tolerant, whereas those accumulating higher
concentrations were more tolerant to drought stress
(Farlas-Rodriquez et al., 1998).

Significant differences were observed between
genotypes (Table 4). Alpha, Bintje, Solanum acaule, S.
demissum and S. stenotonum were significantly more
drought tolerant compared with the other potato
genotypes. High levels of drought tolerance were also
reported for S. acaule and S. demissum in vitro and in
greenhouse pot trials (Arvin and Donnelly, 2008).

Approaches for drought stress resilience

To develop a drought tolerance variety, the breeding
methodology to be applied is the same as for other traits
improvement programmes viz. bulk and pedigree method
could be used for self-pollinated crops and recurrent
selection for cross-pollinated crops. Conversely, if
transfer of few drought tolerance traits to a high-yielding
genotype is the aim, then back cross method is adopted.
In contrast, biparental mating (half sib and full sib)
maintains the broad genetic base in addition to provides
the possibility to evolve the desired genotype of drought
tolerance (Yunus and Paroda, 1982). Development and
adaptation to drought tolerance in a plant is the result of
overall expression of many traits in a specific
environment. In view of the fact that many adaptative
traits are effective only for certain aspects of drought
tolerance and over a limited range of moisture stress,
there is no single trait that plant breeders can use to
improve productivity of a given crop under drought
stress. Hence, alternative potential systematic approach

Fig. 2. Yield contributing traits influenced by irrigation lev-
els in tomato
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is to pyramid a number of traits in one genotype which
can be helpful for the improvement for its drought
tolerance. Some of the key traits for breeding for drought
tolerance [e.g. phenology, rapid establishment, early
vigor, root density and depths, low and high temperature
tolerance, 13C discritunation (a measure of the extent to
which photosynthesis is maintained while stomatal
conductance decreases), root conductance,
osmoregulation, low stomatal conductance, leaf posture,
reflectance and duration, and sugar accumulation in
stems to support later growth of yield components] are
important traits for breeding point of view. However,
priority should be given to those traits which can maintain
stability of yield in addition to overall yield, because traits
for higher yield may, in fact, decrease yield stability
e.g. longer growth period (Parry et al., 2005). Therefore,
for the evolvement of an improved drought tolerant high
yielding variety, it is necessary that the variety should
have short life span (drought escape), well-developed
root system, high stomatal tolerance, high water use
efficiency (drought avoidance), and increased and

stabilized yield during water stress period (drought
tolerance). Although a number of crop cultivars tolerant
to drought stress have been developed through this
method, this approach has been partly successful
because it requires large investments in land, labor and
capital to screen a large number of progenies and
variability in stress occurrence in the target environment
(Athar and Ashraf, 2009). For drought tolerance, three
breeding approaches have been proposed. The first
approach is to breed for high yield under optimum
(irrigated) condition where the maximum genetic
potential of yield is expected to be realized in optimum
condition with a high positive association for
performance in optimum and stress conditions (Johnson
and Frey, 1967). The basic philosophy of this approach
is that where a genotype performs better under optimum
level will also yield comparatively well in drought stress
condition. Genotype × environment (G × E) interaction
may restrict the performance of high-yielding genotype
under drought condition, therefore, the second approach,
i.e. to breed under actual drought condition has been

Table 4. Drought tolerant species and genotypes of vegetables
Sl. 
No. 

Vegetable 
Crops 

Drought tolerant genotypes/species References 

1 Tomato 
  

S. habrochaites (EC- 520061), S. pennelli (IIHR 14-1, IIHR 146-2, IIHR 
383, IIHR 553 , IIHR 555, K-14, EC-130042, EC-104395, Sel-28),  S. 
pimpinellifoloium (PI-205009, EC- 65992, PanAmerican), S. esculentum 
var.  cerasiforme, S. hirsutum, S. cheesmanii, S. chilense, S. habrochaites, 
S. sitiens 

Rai et al. (2011) 
 

  Arka Vikas, RF- 4A Singh (2010) 
  L. pennellii (LA0716), L. chilense (LA1958, LA1959, LA1972), S. sitiens 

(LA1974, LA2876, LA2877, LA2878, LA2885), S. pimpinellifolium 
(LA1579) 

Razdan and Mattoo (2007)  
 
Symonds et al. (2010) 

2 Brinjal S. microcarpon, S. gilo S. macrosperma, S. integrifolium, Bundelkhand 
Deshi 

Rai et al. (2011) 

  S. sodomaeum (syn. S. linneanum) Toppino et al. (2009) 
  SM- 1, SM- 19, SM- 30, VioletteRound, Supreme Kumar and Singh (2006) 
3 Chilli C. chinense, C. baccatum var. pendulum, C. eximium  
  Arka Lohit, IIHR - Sel.-132 Singh (2010) 
4 Potato S. acaule, S. demissum and S. stenotonum, Alpha, Bintje Arvin and Donnelly (2008) 
  S.ajanhuiri ,  S.curtilobum,  S.xjuzepczukii  Ross (1986) 
  Kufri Sheetman  
  Solanum chacoense, Kufri Sindhuri Pandey et al. (2007) 
5 Okra A. caillei, A. rugosus, A. tuberosus  Charrler (1984). 
6 Onion Allium fistulosum, A. munzii, Arka Kalyan, MST 42, MST 46 Singh (2010) 
7 French bean P. acutifolius Kavar et al. (2011) 
8 Water melon Citrullus colocynthis (L.) Schrad. Dane et al. (2007) 
9 Cucumber INGR-98018 (AHC-13) Rai et al. (2008) 
10 Winter Squash Cucurbita maxima Chigumira and Grubben (2004) 
11 Cucumis Spp. Cucumis melo var. momordica VRSM- 58, INGR-98015 (AHS-10), 

INGR-98016 (AHS-82), CU 159, CU 196 
  Cucumis pubescens, INGR-98013 (AHK-119) 
  Cucumis melo var. callosus, AHK- 200, SKY/DR/RS-101 
  Cucumis melo var. chat, Arya 
  Cucumis melo, SC- 15 

Rai et al. (2008), Kusvuran (2012), 
Pandey et al. (2011) 

12 Cassava CE-54, CE-534, CI-260, CI-308, CI-848, 129, 7, 16, TP White, Narukku-3, 
Ci-4, Ci-60, Ci-17, Ci-80 

Singh (2010) 

13 Sweet potato VLS6, IGSP 10, IGSP 14, Sree Bhadra Singh (2010) 
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recommended (Hurd, 1971). However, the relative
expression of optimum genetic potential in the two
extreme conditions may not always fit good for most
of the traits. The desired goal to develop high yielding
drought-tolerant genotype may be achieved through
simultaneous selection in non-stress environment for
yield and in drought condition for stability. Moreover,
the major drawback of second approach is that the
intensity of drought is vastly variable from year to year
and as a consequence environmental selection pressure
on breeding materials changes drastically from
generation to generation. This situation is compounded
with lower heritability and makes the breeding activities
slower and complicated (Roy and Murty, 1970).

An alternative strategy to the above two approaches
would be to improve drought tolerance in high yielding
genotypes through integration of breeding methods
based on morphological and physiological mechanisms
of drought tolerance. Improving the yield potential of
an already tolerant genotype may be a more promising
approach, provided there is genetic diversity in such
material (Bidinger et al., 1995). Evolving a high-yielding
potential variety along with drought stress through
conventional breeding is usually carried out either
through stability analysis to evaluate the response of
the components of yield to stress (Fischer and Sanchez,
1979) or by incorporating traits that contribute directly,
or indirectly, to yield stability (Sadras and Connor, 1993).
Utilization of available genetic variation at inter-specific,
intra-specific and intra-varietal levels is of prime
importance for selection and breeding for enhanced
tolerance to any kind of stress (Ashraf and Sharif, 1998;
Serraj et al., 2005). Several selection indices based on
anatomic, physiological and biochemical criteria for
breeding drought tolerant varieties are being employed
e.g., seed yield, harvest index, shoot fresh and dry
weight, leaf water potential, osmotic adjustment,
accumulation of compatible solutes, water use
efficiency, stomatal conductance, chlorophyll
fluorescence (Ashraf et al., 2007; Neumann, 2008) and
therefore strategy for developing elite material against
drought is basically inclined towards the physiogenetic
approach.

Physiogenetic approach

The degree of drought stress severity can be seen on
plants by symptoms and effects on physiological
metabolisms and yield. Many symptoms of drought
stress are clear such as leaf rolling (Kadioglu et al.,
2012), molding, yellowing (chlorosis), browning and
wilting. At the physiological level, drought stress alters
the complete physiology and metabolism of plants. The

physiologically relevant indicators of drought effects
are the water content and the water potential of plant
tissues (Jones, 2007). Which in turn, depend on the
relative fluxes of water through the plant within the soil-
plant-atmosphere continuum. The physiogenetic
approach basically depends upon the hypothesis that
yield and drought tolerance are different traits governed
by different genes and gene systems (Turner, 1986).
Some of the researchers argue that if yield and drought
are to be handled independently, the degree of
independence for any individual tolerance mechanism
must be evaluated (Blum et al., 1983). A physiological
approach has an advantage over empirical breeding for
yield per se because it increases the probability of crosses
resulting in additive gene action for stress adaptation,
provided that the germplasm is characterized more
thoroughly than for yield alone (Reynolds and
Trethowan, 2007). Consequently, even a negative
correlation between yield and drought tolerance can be
exploited, since potential yield is never realized under
drought (Danquah and Blay, 1999). To maximize the
impact of specific traits, breeding strategies requires a
detailed knowledge of the environment where the crop
is grown, genotype × environment interactions and fine
tuning the genotypes suited for local environments, e.g.,
in drought environments, osmotic adjustment,
accumulation and remobilization of stem reserves,
superior photosynthesis, heat- and desiccation-tolerant
enzymes, etc. are important physiological traits (Mir et
al., 2012). Water stress significantly decreases leaf
chlorophyll concentrations, plant growth, fruit yield but
increases membrane permeability in eggplant grown to
the fruiting stage. The severe water stress treatment
reduces the fruit yield by 66% compared to control
although, high water stress can lower nutrient levels in
the leaves (Kirnak et al., 2001).

In tomato, polyphenols play a significant physiological
role in water-stress tolerance, and moderate water stress
can induce shikimate pathway. Therefore, greater
synthesis of phenolic compounds and the presence of
flavonoids would be key in the protection against damage
caused by water stress (Sánchez-Rodríguez et al.,
2011).

Relationship between carbon accumulation and the
transpired water volume and the associationship between
harvest index and post-anthesis water use imply that
yield is strongly dependent on biomass accumulation
after anthesis in water-limited environments (Passioura,
1977; Tanner and Sinclair, 1983). Moreover, the
contribution of pre-anthesis assimilate can be significant
to yield under drought stress condition (Blum et al.,
1983; Turner and Nicholas, 1988). In sunflower, pre-
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anthesis assimilate played an important role in seed filling
under water stress condition where the stems were
seems to be the foremost reserve structures (Sadras et
al., 1993). Furthermore, accumulation of solutes within
cells resulting in osmotic adjustment lowers the osmotic
potential and helps maintain turgor pressure of shoots
and roots under water stress environment. This results
to turgor-driven processes i.e. stomata opening and
expansion of growth to continue at reduced rates to
gradually lower potentials (Ludlow, 1987). Seed yield
is also contributed by osmotic adjustments by increasing
the amount of water transpired and by minimizing the
reduction in harvest index (Ludlow et al., 1990). This
attribute confers adaptation to drought stress, and there
is some evidence that a minor gene may be influencing
the expression of osmotic adjustment (Basnayake et al.,
1995). Physiological traits relevant for the responses to
water deficits and/or modified by water deficits span a
wide range of vital processes (Table 5). The different
crop developmental stages show different sensitivity to
drought stress.

Grafting tools for drought tolerance breeding

The stionic effect (effect of root stock on scion and
vice versa) has been used for various prospects of biotic
and abiotic tolerant breeding programme for a long time.
Several effective rootstocks have been mentioned and
are used in breeding programs (Schwarz et al., 2010).
Sanders and Markhart (1992) reported that the osmotic
potential of dehydrated scions of grafted bean (Phaseolus
vulgaris L.)  plants was determined by the rootstocks,
while the osmotic potential of non-stressed scions was
governed by the shoot. Drought tolerance provided by
either the rootstock or the scion resulted in enhanced
nitrogen fixation in soybean (Serraj and Sinclair, 1996).
Experimental results did not confirm the advantage of
eggplants when used as a rootstock for tomato
(Abadelhafeez et al., 1975). Grafted mini-watermelons
onto a commercial rootstock (PS 1313: Cucurbita
maxima Duchesne × Cucurbita moschata Duchesne)
revealed a more than 60% higher marketable yield when
grown under conditions of deficit irrigation compared
with ungrafted melons (Rouphael et al., 2008). In
tomato, ungrafted cv. Zarina and grafted cv. Josefina ×
Zarina again registered the highest differences for these
ratios, and therefore appear to present a greater capacity
to eliminate reactive oxygen species.Grafted plants
achieve greater tolerance to water stress apparently by
developing a better antioxidant system, which in turn
leads to better overall plant development. When shoots
were of the drought tolerant genotype, Zarina, the
changes in antioxidant enzyme activities were large and

consistent. However, when shoots were of the drought
sensitive genotype Josefina, the antioxidant enzyme
activities were more limited and the oxidative stress was
evident. Therefore, grafting on specific rootstocks more
adapted to water stress conditions may be a tool to
improve crop quality under artificially imposed mild
water stress (Sánchez-Rodríguez et al., 2012). Thus,
selective stocks and scion can be effectively used for
improving the antioxidant response in tomato under
water stress.

Mutation breeding for drought stress

Ronde and Spreeth (2007) used -irradiation to obtain a
high frequency of gene mutation and chromosomal
alterations. Irradiation dosages between 0 and 300 Gy
were applied in order to determine the optimal irradiation
dose of 180 Gy. Mature plants of M1-M4 generation
were screened in a rain-out shelter and physiological
traits for drought stress were identified. Roots of mature
plants were also assessed and the variation observed
could be correlated with drought tolerance. Six mutant
cowpea lines were included in a physiological screening
experiment that was conducted on greenhouse plants
(Ronde and Spreeth, 2007). The results demonstrated
that the mutant line 217 performed very well in terms
of relative water content, free proline concentration and
yield. Two Cuban tomato varieties (INCA 9-1 and Amalia)
were irradiated by 60Co -rays at doses of 300 and 500
Gy (Gonzalez et al., 2005). Selection was made for
genotypes of high yield, large fruit, disease tolerance
and fruit quality. In M6 generation, evaluation was
conducted under water stress conditions for (Fig. 3)
60 plants of each of the best mutant lines, four of them
from INCA 9-1 variety and three from Amalia variety.

Due to the environmental uncertainties especially drought
stress faced by crop, the primary objective will be to
optimize confined management practices to reduce
severe stress as far as possible and, in particular, to
intensify the search for genotypes/ lines which show
higher resilience in the face of a given environmental
stress. There is a need for evaluating how combination
of traits influences plant water status and growth which
may usefully bridge physiology and breeding into the
integrated programme of crop improvement for drought
management. The growing threat of dwindling water
resources demands germplasm that carry drought
tolerance and water-use efficiency. Research must
combine the latest genomics resources including
quantitative genetics, genomics along with physiological
and biochemical understandings of the interactions
between crop plant genotypes and the growing
environment for better management of drought stress.
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Table 5. Response of physiological traits to drought conditions

Source: Adopted from Cattivelli et al. (2008).

Plant traits Effects relevant for yield Modulation under stress References 
Stomatal 
conductance/leaf 
temperature 

More/less rapid water consumption. 
Leaf temperature reflects the evaporation 
and hence is a function of stomatal 
conductance 

Stomatal tolerance increases 
under stress 

Jones (1999), Lawlor 
and 
Cornic (2002) 

Photosynthetic capacity Modulation of concentration of Calvin 
cycle enzymes and elements of the light 
reactions 

Reduction under stress Lawlor and Cornic 
(2002) 

Timing of phenological 
phases 

Early/late flowering. Maturity and growth 
duration, synchrony of silk emergence and 
anthesis, reduced grain number 

Wheat and barley advanced 
flowering, rice delayed, maize 
asynchrony 

Slafer et al. (2005), 
Richards (2006) 

Anthesis-silking 
interval 
(ASI) in maize 

ASI is negatively associated with yield 
in drought conditions 

Drought stress at flowering causes 
a delay in silk emergence relative 
to anthesis 

Bolanos and Edmeades 
(1993), Edmeades et al. 
(2000) 

Starch availability 
during 
ovary/embryo 
development 

A reduced starch availability leads to 
abortion, reduced grain number 

Inhibition of photosynthetic 
activity 
reduces starch availability 

Boyer and Westgate 
(2004) 

Partitioning and stem 
reserve utilization 

Lower/higher remobilization of reserves 
from stems for grain-filling, effecting 
kernel weight 

Compensation of reduced current 
leaf photosynthesis by increased 
remobilization 

Blum (1988), 
Slafer et al. (2005) 

Stay green Delayed senescence - Rajcan and Tollenaar 
(1999) 

Single plant leaf area Plant size and related productivity Reduced under stress (wilting, 
senescence, abscission) 

Walter and Shurr (2005) 

Rooting depth Higher/lower tapping of soil water 
resources 

Reduced total mass but increased 
root/shoot ratio, growth into wet 
soil layers, re-growth on stress 
release 

Hoad et al. (2001), 
Sharp et al. (2004) 

Cuticular tolerance and 
surface roughness 

Higher or lower water loss, modification 
of boundary layer and reflectance 

- Kerstiens (1996) 

Photosynthetic pathway C3/C4/CAM, higher WUE and greater 
heat tolerance of C4 and CAM 

- Cushman (2001) 

Osmotic adjustment Accumulation of solutes: ions, sugars, 
poly-sugars, amino acids, glycinebetaine 

Slow response to water potential Serraj and Sinclair 
(2002) 

Membrane composition Increased membrane stability and changes 
in aquaporine function 

Regulation in response to water 
potential changes 

Tyerman et al. (2002) 

Antioxidative defense Protection against active oxygen species Acclimation of defence systems Reddy et al. (2004) 
Accumulation of 
stress-related proteins 

Involved in the protection of cellular 
structure and protein activities 

Accumulated under stress Ramanjulu and Bartels 
(2002), Cattivelli et al. 
(2002) 
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