Genetic analysis of yield and its components in okra (*Abelmoschus* esculentus (L) Moench)

Mukesh Kumar, AK Yadav, RK Yadav, HC Singh, Shweta Yadav and PK Yadav

Received : September, 2013 / Accepted : November, 2013

Abstract: Combining ability variance and effect of yield and its components in okra (Abelmoschus esculentus (L) Moench) were studied through half diallel analysis of 28 F. hybrids derived by crossing nearly homozygous germplasm lines namely PK, VRO35, VRO54, 7218, VO-2, KS-404, 7109 during Kharif 2010 (July to October) at vegetable research form C.S.A.U.A & T Kalyanpur, Kanpur India the role of non-additive gene action for all the characters in both the generations except for nodes per plant, width of fruit, number of fruits per plant and yield per plant and role of additive gene action for all the a characters is both generation. The mean performance and significant gca effect revealed that the parents (KS-404, 7218, VRO-54 and BO-2) were good combiner for days to flowering and KS-404 & PK are good general combiner for yield/Plant. The crosses significant and positive and desirable SCA ca effect for yield per plant was founded 12 cross combination F₁ generation and 11 in F₂ generation. There were PK x KS-404, PK x P-7, KS-404 x BO-2 and 7218 x VRO -54 should utilized in recombination breeding with single plant selection in the passing generations to capitalized additive gene action to develop high yielding lines or verities in Okra.

Keywords: Combining ability effects gene effects germplasm line, half diallel analysis

Introduction

The cultivated Okra is *Abelmoschus esculentus* (L) Moench. It is native of Ethiopia (Vavilov, 1951) it is worn season vegetable in the tropical & subtropical countries of the world.Hybridization is been must successful approach in increasing in productivity in vegetable crop selection of genetically superior and suitable genotypes is the most important stage from the stand point of hybridization of vegetable crops in order

Mukesh Kumar, A.K. Yadav, RK Yadav, HC Singh, Shweta Yadav and PK Yadav

to develop new genotypes having desirable characters. One of the main problem of vegetable breeders for developing high yielding variety through either heterosis breeding or pedigree breeding is to select good parents and crosses. In the systematic breeding programme is essential to identify superior parents for hybridization and crosses to expand the genetic variability for selection of superior genotype. (Inamullah et al., 2006). The value of any population depends on its potential per say and its combining ability in crosses. Selection of parents on the basic of phenotypic performance of a genotype alone is not a sound procedure, since phonotypically superior line may not lead to exact degree of heterosis in F, generation or through superior transgressive segregating generations. Thus any methods which would help in choosing desirable parents for hybridization will be important for the vegetable breeders. Combining ability analysis is important to decide parents, crosses and appropriate breeding procedure to be followed to select heterotic F, hybrids or desirable Segregates (Salgotra et al., 2009) Diallel analysis is one of the powerful tools for characterizing the genetic architecture of breeding material and estimate the GCA of parents and selecting of desirable parents and crosses with high specific combining ability (SCA) for the exploitation of heterosis (Sarkar et al., 2002).

Material and Methods

Eight elite intermediary diverse line of Okra namely. PK, VRO-35, VRO-54, 7218 BO-2, KS-404 and 7109 were crossed in all possible combinations excluding reciprocals (n(n-1)/2) to develop 28 half diallel crosses during summer 2010. 28 F_1 along with 8 parents were evaluated in a randomized block design with three replications during mid Kharif (July-Oct,- 2010) at vegetable research farm of C.S.A.U.A. & T. Kanpur. In each replication each entry was gown in a double row plot of 3.0m length and 1.5m width. Maintaining row to row spacing of 60 cm and plot to plot spacing of 30 cm apart. All the recommended Agronomical practices

Department of Genetics and Plant Breeding, Department of Vegetable Science, C.S. Azad University of Agriculture & Technology Kanpur (U.P.)

Source of variation		d.f.	Days to flowering	Plant height	Branches per plant	first fruiting	Node/plant	Length of internode	Length of fruit	Width of fruit	Number of fruit/plant	Yield/plant
Gca	F ₁	7	15.81**	214.69**	0.276**	node 2.71**	12.00**	0.79**	2.57**	0.73**	10.196**	1562.93**
Gea	F_2	7	15.67**	195.17**	0.262**	3.06**	10.68**	3.29**	2.11**	0.50**	7.24**	1461.88**
Sca	F_1	28	3.21**	32.86**	0.33**	0.512**	1.19**	1.14**	0.82**	0.06**	0.215**	46.28**
	F2	28	2.54**	25.01**	0.26**	0.46**	0.52**	0.39**	0.63**	0.05**	0.62**	34.68**
Error	$\tilde{F_1}$	70	0.021	7.55	0.006	0.049	0.003	0.004	0.003	0.003	0.042	1.27
	F ₂	70	0.016	1.46	0.005	0.007	0.002	0.003	0.006	0.0002	0.047	1.26
σ^2 gca	F_1		1.58	20.71	0.027	0.266	1.199	0.078	0.257	0.072	1.015	156.17
•	F_2		1.57	19.37	0.026	0.305	1.067	0.328	0.210	0.049	0.719	146.06
σ^2 sca	F_1		3.19	25.31	0.324	0.463	1.187	1.136	0.817	0.057	0.173	45.01
	F_2		2.52	23.55	0.255	0.453	0.518	0.387	0.624	0.049	0.573	33.42
$\sigma^2 g / \sigma^2 s$	F_1		0.49	0.82	0.08	0.574	1.01	0.07	0.31	1.26	5.87	3.47
•	F_2		0.62	0.82	0.101	0.673	2.06	0.85	0.34	1.00	1.25	4.37
$\sigma^2 s / \sigma^2 g$	F_1		1.41	1.10	3.06	1.31	0.76	3.81	1.78	0.88	0.41	0.52
•	F_2		1.26	1.11	3.13	1.30	0.69	1.08	1.72	1.00	0.88	0.46
GPR	F_1		0.50	0.62	0.14	0.53	0.66	0.12	0.38	0.71	0.92	0.87
	F_2		0.55	0.62	0.16	0.57	0.80	0.62	0.40	0.66	0.71	0.89

Table 1: Analysis of variance for combining ability in respect to 10 characters in okra

*Significant at 5% level

**Significant at 1% level

Table 2: General combining ability effects and corresponding mean performance of 8 parents in okra

Parents	Days to flowering GCA		Plant height GCA		Branches per plant GCA		Number of first fruiting node GCA		Node per plant		
									GCA		Mean
	F_1	F ₂	F_1	F ₂	F_1	F ₂	F ₁	F ₂	F_1	F ₂	
РК	0.77**	0.62**	7.14**	6.04**	0.01**	-0.03**	0.60**	0.54**	1.64**	1.90**	23.00
KS-404	-1.65**	-1.46**	3.91**	4.26**	-0.31**	-0.28**	-0.19**	-0.24**	1.42**	0.91**	22.30
7218	-2.05**	-1.95**	-4.16**	-3.98**	0.02**	0.09**	0.25**	0.12**	0.25**	0.18**	20.20
VRO-54	-0.02**	-0.07**	-7.01**	-6.60**	0.14**	0.15**	-0.25**	-0.20**	-0.06**	-0.23**	19.56
VRO-35	0.77**	0.63**	-1.52**	-2.60**	0.09**	0.04**	0.06**	0.26**	-0.24**	-0.09**	20.14
P-7	1.16**	1.56**	0.64	1.04**	-0.07**	-0.06**	0.72**	0.82**	-1.45**	-1.40**	17.45
BO-2	-0.24**	-0.57**	-2.19**	-1.63**	-0.11**	-0.15**	-0.85**	-0.91**	-0.42**	-0.33**	19.56
7109	1.26**	1.23**	3.18**	3.47**	0.23**	0.22**	-0.34**	-0.40**	-1.14**	-0.94**	18.67
SE (gi) ±	0.002	0.001	0.66	0.13	0.0005	0.0004	0.004	0.0006	0.0003	0.0002	-
SE (gi-gj) ±	0.004	0.003	1.51	0.29	0.001	0.0009	0.009	0.0014	0.006	0.0004	-

* Significant at 5% level

** Significant at 1% level

Parents	Length of internode		Length of fruit		Width of fruit		Number of fruit/plant		Yield per plant	
	F_1	F ₂	F_1	F ₂	F_1	F ₂	F_1	F ₂	F_1	F_2
РК	0.49**	0.74**	0.55**	0.54**	0.39**	0.31**	1.23**	0.96**	11.68**	10.41**
KS-404	-0.26**	-0.21**	-0.35**	-0.29**	-0.26**	-0.24**	1.68**	1.36**	20.11**	19.84**
7218	0.30**	0.11**	-0.06**	-0.10**	0.05**	0.06**	-0.37**	-0.17**	-9.57**	-9.31**
VRO-54	-0.27**	-0.85**	-0.18**	-0.18**	-0.32**	-0.27**	-0.97**	-0.89**	11.01**	-11.02**
VRO-35	-0.18**	-0.44**	0.03**	0.04**	0.15**	0.12**	-0.02**	0.02**	9.35**	9.46**
P-7	-0.19**	-0.13**	0.91**	0.80**	0.00	0.01**	0.27**	0.35**	0.58**	0.63**
BO-2	0.12**	0.87**	-0.68**	-0.62**	-0.29**	-0.23**	-0.96**	-0.90**	-14.41**	-13.43**
7109	-0.02**	-0.09**	-0.21**	-0.19**	0.29**	0.23**	-0.86**	-0.72**	-6.72**	-6.57**
SE (gi) ±	0.0004	0.0003	0.0003	0.0005	0.0003	0.00002	0.004	0.004	0.11	0.11
SE (gi-gj) ±	0.0008	0.0006	0.0006	0.0012	0.0006	0.00004	0.008	0.009	0.25	0.25

* Significant at 5% level

** Significant at 1% level

were followed to raise a good crop. Regular plot protection measures were carried out to safe guard the crop from pest and diseases. Observation were recorded on five randomly selected competitive plants in each genotypes in each replication for days to 50% flowering, plant height (cm), number of braches per plant, number of first fruiting node, number of nodes per plant, length of Internodes, Length of fruit, width of fruit, number of fruits per plot and yield per plants. The variances of general combining ability and their effects and specific combining ability effects were calculated as per Griffings (1956) method-2 model I . The variance for general combining ability and specific combining abilities were tested against their respective error variance derived from analysis of variance redressed mean level. Significant test for GCA and SCA effect were performed

Characters	Best	combiner on the basis of gca effects	Best parents based on <i>per se</i> performance	Common
Days to flowering	F_1	KS-404, 7218, VRO-54, BO-2	7218, KS-404, VRO-54, BO-2	KS-404, 7218, VRO-54, BO-2
	F_2	KS-404, 7218, VRO-54, BO-2		
Plant height	F_1	PK, VRO-54, 7218, KS-404, 7109	PK, 7109, KS-404, P-7, VRO-35	PK, KS-404, 7109
-	F_2	PK, VRO-54, KS-404, 7218, 7109		
Branches per plant	F_1	7109, KS-404, VRO-54, BO-2	VRO-54, 7109, 7218, BO-2	7109, VRO-54, BO-2
	F_2	KS-404, 7109, BO-2, VRO-54		
Number of first fruiting	F_1	BO-2, P-7, PK, 7109	P-7, PK, VRO-54, VRO-35	PK, P-7
node	F_2	BO-2, P-7, PK, 7109		
Node per plant	F_1	PK, P-7, KS-404, 7109	PK, KS-404, 7218, VRO-35	PK, KS-404
	F_2	PK, P-7, 7109, KS-404		
Length of internode	F_1	PK, 7218, VRO-54, KS-404	PK, BO-2, P-7, 7218	PK
	F_2	BO-2, VRO-54, PK, VRO-35		
Length of fruit	F_1	P-7, BO-2, PK, KS-404	PK, P-7, 7109, 7218	PK, P-7
	F_2	P-7, BO-2, PK, KS-404		
Width of fruit	F_1	PK, VRO-54, BO-2, 7109	PK, VRO-35, P-7, 7109	PK, 7109
	F_2	PK, VRO-54, BO-2, 7109		
Number of fruit per plant	F_1	KS-404, PK, VRO-54, BO-2	KS-404, PK, P-7, VRO-35	KS-404, PK
	F_2	KS-404, PK, BO-2, VRO-54		
Yield per plant	F_1	KS-404, BO-2, PK, VRO-54	KS-404, VRO-35, PK, P-7	KS-404, PK

Table 3: Ranking of parents for various characters

using t test as suggested by Cochran and Cox (1950) and Wynne *et al.*, (1970).

Result and Discussion

Analysis of variance for combining ability conducted for all the ten characters in both the generations. The mean sum of square due to GCA & SCA was recorded as highly significant for all the characters in both the generations. The estimates of GCA were more than SCA variance in respect for all the attributes. The presence of high estimates of Variance² SCA in comparison to corresponding Variance² SCA was observed for all the characters except yield per plant which showed higher estimates of Variance SCA than SCA based on both the generations.

The mean performance and significant GCA effect revealed that the parents KS-404, 7218, VRO-54 and BO-2 were good general combiner for days to 50% flowering; PK, KS-404 and 7109 for plant height; 7109, VRO-54 and BO-2 for branches per plant, PK for length of fruit; PK, 7109 for width of fruit; KS-404 and PK for number of fruits per plant and KS- 404 and PK for yield per plant in both the generations. Among the different parents PK among all was found to be best general combiner for most of the traits studied.

Significant positive and desirable SCA effect for yield per plant was found in 12 cross combinations in F_1 generation and 11 in F_2 generations. These were PK x KS-404, PK x P-7, KS-404x BO-2 and 7218 x VRO respectively.

The per say performance SCA and corresponding GCA effects revealed that fallowing crosses passes all sort

of possible combination between higher and lower order of GCA effect in F_2 generation cross combination PK x KS-404, PK x P-7 and PK x VRO-35 showed high x high GCA status. Cross combination KS-404 x BO-2 showed high x low GCA status while 7218 x VRO-54 showed Low x Low parents of GCA combination. This cross also passes significant desirable SCA effect for more than effect for more than 50% characters under study.

Based F_2 generation cross combination PK x KS-404 and PK x showed high x high GCA status cross combination KS-404 x BO-2 and PK x BO-2 showed high x Low pattern while 7218 x VRO-54 show also passes significant under study.

References

- Cochran WG and Cox GM (1950) Experimental Designs, John Wiley and Sons, Inc, New York, pp 64.
- Inamullah AH, Muhammad F, Sirajuddin HG and Gul R (2006) Evaluation of heterotic and heterobeltiotic potential of wheat genotype for improved yield. Pakistan Journal of Botany 38(4): 1159-1168.
- Salgotra RK, Gupta BB and Singh P (2009) Combining ability studies for yield and yield components in Basmati rice. Oryza 46(1): 12-16.
- Sarkar U, Biswas PS, Prasad B and Mian MAK (2002) Heterosis and genetic analysis in rice hybrids. Pakistan Journal of Biological Sciences 5(1): 1-5.
- Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chronological Botany 13: 1949-1950.
- Wynne JC, Emery DA and Rice PM (1970) Combining ability estimates in *Arachis hypogea* L. II. Yield performance of FI hybrids. Crop Science 10(6): 713-715.