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Abstract

Brinjal (Solanum melongenal L.,) also known as eggplantis an important solanaceous vegetable crop grown across tropical and subtropical
regions of the world. India is the centre of origin of the crop, large diversity in the morphology of fruit and plant type exists in the
country. Also, a large number of wild relatives is being utilized in breeding programs as a source of biotic and abiotic stress tolerance.
Conventional breeding programs have focused on improving plant type and yield through the development of high-yielding varieties
and hybrids. More recently, breeding for stress tolerance and enhanced nutritional content has gained importance. Genetic inheritance
studies, mapping, molecular tools are enriching the crop improvement work. Of late, the availability of high-quality genome sequences
has spurred functional analysis at the genome level augmenting molecular tools for marker-assisted selection. In the present article,
attempt has been made to highlight the improvement work carried out from relevance of the crop diversity to genomic-level knowledge
advancement. Future prospective in brinjal improvement having relevance in Indian context is also highlighted.
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Introduction

Eggplant (Solanum melongena L.), known by various names
such as brinjal or aubergine, is a prominent member of the
diverse Solanaceae family, which encompasses around
3000 species across nearly 90 genera (Vorontsova and
Knapp, 2012). Widely cultivated in tropical and subtropical
regions, eggplant is a staple vegetable crop, contributing
significantly to global agricultural production. In 2021, the
cultivation of brinjal covered 1.96 million hectares, yielding
approximately 58.64 million metric tonnes worldwide.
Notably, eggplant holds a place among the top five essential
vegetable crops in Asia and the Mediterranean region, with
China, India, Egypt, Turkey, and Indonesia emerging as
leading producers (www.fao.org/faostat).

In India, a major player in the global eggplant production
landscape, the cultivation of brinjal is projected to reach
12.98 million metric tonnes in 2022 (Anonymous, 2022).
While the crop is grown throughout the country, key brinjal-
producing states include West Bengal, Orissa, Gujarat, Bihar,
and Madhya Pradesh. India’s brinjal, characterized by glossy,
round-shaped fruits with purple skin and a green calyx, is
exported to various countries, including Sri Lanka, Maldives,
Singapore, Sudan, and Mali. Beyond its culinary significance,
eggplant boasts nutritional value, being low in calories, high
in fiber, and rich in bioactive compounds. Phenolic acids,
particularly chlorogenic acid, constitute a significant portion
of the total phenolics in the fruit flesh, while anthocyanin in

© The Author(s) 2023. Open Access. This article is Published by the Indian Society of Vegetable Science, Indian Institute of Vegetable Research, Jakhini,
Varanasi-221305, Uttar Pradesh, India; Online management by www.isvsvegsci.in


http://www.fao.org/faostat

Akanksha et al.: Brinjal Breeding and Genomics

167

the fruit skin adds to its health benefits (Plazas et al., 2014;
Braga et al., 2016). Moreover, eggplant serves as a source of
essential minerals such as phosphorus, potassium, calcium,
and magnesium. The nutritional composition varies across
cultivars and is influenced by environmental factors.
Recognized for its prolific nature, eggplant is often
hailed as the “poor man'’s vegetable” (Som and Maity, 2002).
Additionally, eggplant is acknowledged for its medicinal
properties, historically used in treating conditions like
toothache, liver complaints, and diabetes. Notably, different
cultivars exhibit variations in nutritional content, with white
cultivars containing double the crude fiber of purple and
green cultivars (Flick et al., 1978). Despite its nutritional
benefits, eggplant cultivation faces challenges, including
susceptibility to diseases, insect pests, and abiotic stresses
such as heat and drought. Major diseases affecting eggplant
include Fusarium wilt, Verticillium wilt, bacterial wilt,
bacterial blight, little leaf (viral), and nematodes. Among
insect-pests, the fruit and shoot borer (Leucinodes orbonalis)
pose a significant threat, causing up to 70% yield loss.
Inlight of these challenges, there is a growing imperative
for understanding and harnessing eggplant genetic
resources through conventional and molecular breeding
approaches. This involves the utilization of genomics tools to
expedite theimprovement of eggplant varieties, addressing
both yield and quality considerations. In this context, this
comprehensive exploration aims to delve into the genetic
resources, characterization, and utilization of eggplant,
providing insights into the challenges and opportunities for
accelerated improvement in eggplant cultivation.

Origin and Domestication of Eggplant

Eggplant (Solanum melongena L.) finds its roots in India
or Indo-China, with over 42 Solanum species thriving in
the region. Historical evidence indicates its cultivation in
China from the 4th century, and its introduction to the
Mediterranean by Arabs in the 7th century. Believed to
be native to the Old World, eggplant’s journey involves its
domestication from S. insanum, evolving from the Middle
Eastern/African species S. incanum. S. melongena L. is the
primary Asian eggplant, extensively cultivated in India.
Notably, two semi-cultivated or wild relatives, S. aethiopicum
and S. macrocarpon, are found in sub-Saharan Africa. These
species, originating in West Africa, contribute to the genetic
diversity of cultivated eggplant through cross-breeding.
The domestication process of eggplant in Asia, particularly
in the Indo-Burma area, is supported by archaeological
findings in Rakhigarhi, India, dating back to 4000 BCE.
Phylogenetic studies position cultivated eggplant close to
its wild ancestor, Solanum incanum, within the “S. incanum-S.
melongena complex.”

Eggplant Gene pool

The eggplant gene pool, shaped by the intricate interplay
of domestication and crossing behaviors, is characterized

by a diverse set of wild species. These species, typically
bitter, spiny, and small-fruited, fall into the “eggplant
complex,” classified into three gene pools. The primary
gene pool (GP1) encompasses the cultivated S. melongena
and its immediate wild ancestor, S. insanum, known for
their ease of crossability and fertility in hybrids. Moving
to the secondary gene pool (GP2), scarlet eggplant (S.
aethiopicum) and gboma eggplant (S. macrocarpon) take
center stage, along with their progenitors and over 40
challenging-to-cross wild species. Examples include partial
sterile hybrids obtained from S. tomentosum, S. linnaeanum,
and S. dasyphyllum due to inherent hybridization barriers.
The tertiary genepool (GP3) introduces distantly related
wild species like S. sisymbriifolium, S. elaeagnifolium, and S.
torvum, necessitating special pre-breeding techniques for
successful hybridization. India recognized as the center of
eggplant diversity, hosts about 28 Solanum species, with
maximum diversity observed in the western and eastern
peninsular regions and the northeastern region.

In terms of genetic resources and diversity, eggplant'’s
richness is evident with over 5,665 accessions of S.
melongena, 798 accessions of S. aethiopicum, and 196
accessions of S. macrocarpon conserved globally. India’s
National Bureau of Plant Genetic Resources (NBPGR) alone
holds more than 1,900 accessions. The World Vegetable
Center leads in collections, with over 2,200 accessions
spanning 90 countries. Wild eggplant relatives, distributed
across Africa and Asia, emerge as valuable sources of genes
for stress tolerance in breeding programs, despite their often
prickly exteriors and bitter fruits. In the diverse landscape
of India, regional preferences for eggplant characteristics
vary, giving rise to a multitude of landraces still in
cultivation. Noteworthy varieties like Udupi MattuGulla,
AgsechiVayingim, and RamnagarBhanta, some even
registered as Geographical Indications, reflect the cultural
nuances and richness embedded in eggplant cultivation
across the country.

Eggplant Gene Banks
Collection and conservation of germplasm is done in
gene banks. Eggplant germplasm is conserved at various
national/international gene banks. The World Vegetable
Centre (earlier AVRDC), Taiwan holds the largest number
over 3000 accessions belonging to 90 different countries.
Other international gene banks maintaining germplasm
collections are the Plant Genetic Resources Conservation
Unit, USDAARS, USA; the Center for Genetic Resources at
the Wageningen University & Research, The Netherlands;
the Vavilov Research Institute of Plant Genetic Resource in
Russia; the ICAR-National Bureau of Plant Genetic Resources
in India; the Institute of Vegetables and Flowers in China and
the French National Institute for Agricultural Research (INRA)
in Avignon, France etc. (GENESYS, 2020).

S. melongena is maximum recorded in India with over
5000 accessions and 21000 globally. S. macrocarpon and S.
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aethiopicum were found maximum in West Africa with a total
of 1365 and 4230, respectively. The Asian Vegetable Research
and Development Center (AVRDC) Shanhua, Taiwan, is also
one of the largest genebank holders of the three cultivated
eggplants with 2256 of S. melongena, 60 of S. aethiopicum,
and 42 accessions of S. macrocarpon. In India, it is estimated
that 1800 eggplant landraces, cultivars, and wild species
were collected by the National Bureau of Plant Genetic
Resources, NBPGR, New Delhi. Likewise, a large number of
eggplant collections are maintained worldwide (Table 1).

Conventional Breeding

Eggplant, a self-pollinated crop, sees the preference for
F1 hybrids in commercial cultivation, offering diverse fruit
shapes and peel colors ranging from white to various shades
of purpleand green. Genetic diversity in cultivated eggplants
is a result of extensive human selection, hybridization, and
natural inter-crossing, with studies pointing to S. ovigerum
as theinitial domesticated landrace. Conventional breeding
aims to address challenges like insect pests, diseases, and
abiotic stresses such as salinity, heat, cold, and drought. Key
breeding objectives include enhancing fruit yield, quality

Table 1: Eggplant germplasm in the world gene banks

Species GBIF GENSYS AVGRIS
Cultivated eggplant

Solanum melongena 21,852 4056 2256
Solanum aethiopicum 4230 590 60
Solanum macrocarpon 1365 95 42
Wild relatives of eggplant

Solanum nigrum 211,385 44 20
Solanum americanum 27,624 43 189
Solanum torvum 12,775 115 39
Solanum villosum 11,590 48 17
Solanum sisymbriifolium 7054 4 10
Solanum nigrescens 4794 1 2
Solanum anguivi 4098 23 39
Solanum seaforthianum 3713 3 5
Solanum linnaeanum 3327 4 3
Solanum capsicoides 2638 1 1
Solanum viarum 2237 3 17
Solanum incanum 2008 28 3
Solanum aculeatissimum 1873 46 19
Solanum violaceum 1606 1 59
Solanum scabrum 1400 148 55
Solanum lasiocarpum 1076 31 34
Solanum virginianum 1032 3 3
Solanum trilobatum 207 10 7
Solanum ferox 150 11 8
Solanum insanum 110 1 16

traits, and resistance to stresses. Manual emasculation and
pollination, though effective, are labor-intensive, prompting
the pursuit of cytoplasmic male sterility for breeding
efficiency. Grafting technology has also proven beneficial,
particularly in regions with serious soil-borne pathogens,
where successful grafting has been demonstrated between
S. melongena and various rootstocks.

Wild relatives of eggplant, including S. aethiopicum,
S. linnaeanum, S. sisymbriifolium, S. aculeatissimum, and S.
torvum, serve as valuable sources of disease resistance.
The breeding efforts involve inter-specific hybridization,
producing hybrids with resistance to bacterial wilt,
Fusarium/Verticillium wilt, leafhopper, aphids, and fruit and
shoot borer. Floral morphology in eggplant encourages
both self and cross-pollination, with selfing undertaken to
maintain purity. Breeding for improvement encompasses
a wide array of traits, including high yield, earliness, better
quality, plant architecture, fruit characteristics, low seed
content, glossiness, slow browning of cut fruits, nutritional
value, and resistance to various pests and diseases. Pure-line
selection, pedigree, and backcross methods are commonly
employed, with F1 hybrids gaining popularity due to their
vigor, uniformity, and higher yield. Different fruit shapes,
such as small round, long, oblong, and round, are bred for
commercial cultivation (Table 2).

Crop wild relatives (CWR) are vital sources of resistance
genes, and interspecific hybridization with CWR is a
significant strategy for resistance breeding. Mapping
populations are developed to identify resistant genes/
alleles for biotic and abiotic stresses. The utilization of
diverse wild relatives faces challenges in conventional sexual
reproduction, leading to the use of CWR as rootstocks with
susceptible cultivated varieties/hybrids as scions to create
commercial grafts. These grafts exhibit tolerance to various
stresses and demonstrate improved growth and yield traits.

Molecular Breeding

Conventional breeding efforts in eggplant have yielded
various cultivars, but Marker-Assisted Selection (MAS) has
not yet contributed to the development of varieties. The
vast collection of eggplant germplasm globally necessitates
characterization for utilization in breeding and genomics
research, evaluating traits like phenotype, yield, and disease
resistance. Molecular markers, including RAPD, SSR, ISSR,
and AFLP, have been employed for characterizing genetic
diversity. The first genetic map was established using RFLP
markers in an F2 population of S. melongena x S. linneanum,
subsequently improved with 110 COSIl markers. QTLs were
identified for morphological traits in later studies.

The recent publication of a high-quality, chromosome-
level whole genome sequence for eggplant has accelerated
genomics-assisted breeding. While no varieties have been
developed through MAS, recent studies have focused on
mapping important economic traits using genome-wide
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Table 2: Biotic/abiotic stresses and resistance source of eggplant species

Biotic/abiotic stress Resistance source (Solanum spp.)

References

Diseases

Bacterial wilt (Ralstonia
solanacearum)

Phomopsis blight
(Phomopsis vexans)

Fusarium wilt
(Fusarium oxysporum)

Verticillium wilt (Verticillium
spp.)

Powdery mildew (Leveillula
taurica)

Little leaf (viral)

S. hispidum, S. torvum, S. nigrum, S. xanthocarpum, S. sisymbrifolium, S.
mammosum, S. integrifolium, S. melongena

S. aethiopicum, S. incanum, S. indicum, S. xanthocarpum, S. indicum, S. gilo, S.
khasianum, S. nigrum, S. sisymbrifolium, S. nigrum, S. viarum, S. violaceum
S.mammosum, S. incanum, S. aethiopicum, S. integrifolium, S. violaceum

S. aethiopicum, S. hispidum, S. linnaeanum, S. sisymbrifolium, S. torvum

S. pseudocapsicum, S. aviculare, S. aculeatissimum, S. linnaeanum

S.viarum, S. integrifolium, S. gilo, S. hispidum, S. melongena

AVRDC (1998), Wang et al.
(1998)

Pandey et al. (2002)
Yamakawa (1982)

Tani et al. (2018)

Bubici and Cirulli (2008)

Sidhu and Dhatt (2007)

Insect-pest

Fruit and shoot borer
(Leucinodes orbonalis)
incanum, S. hispidum

Red spider mite

(Tetranychus urticae) macrocarpon

Root knot nematode
(Meloidogyne javanica)

Leafhopper
(Amrasca devastans)

S. melongena

Spotted or Epilachna beetle

(Epilachna vigintioctopunctata)
Aphid (Aphis gossypii) S. mammosum.S. hispidum

Gall midge S. macrocarpon

S. aethiopicum, S. indicum, S. mammosum, S. macrocarpon, S. viarum, S.
sisymbrifolium, S. integrifolium, S. xanthocarpum, S. nigrum, S. khasianum, S

S. sisymbrifolium, S. pseudocapsium, S. mamosum, S. integrifolium, S.

S. hispidum, S. sisymbrifolium, S. melongena, S. torvum, S. violaceum

S. melongena, S. mammosuml, S. torvum, S. viarum

95-98 Ramasamy (2009),
Lal et al. (1976), Rao (1980),
Sharma et al. (1980)

Schaff et al. (1982)

Boiteux et al. (1996)
AVRDC (1998)

Parker et al. (1995)

Rao (1980)
Rao (1980)

Abiotic stress

Salinity S. aethiopicum, S. sisymbriifolium, S. torvum, S. linnaeanum Anushma et al. (2018)
Drought S. khasianum, S. torvum Anushma et al. (2018)
Flood S. torvum Anushma et al. (2018)
Frost S. mammosum, S. viarum, S. grandiflorum Anushma et al. (2018)

High antioxidant activity S. aethiopicum

Hanson et al. (2006)

markers. SSR markers have been linked to the dark purple
skin color of eggplant, and candidate genes, such as
Smechr0301963, have been identified for regulating fruit
length. Genome-wide markers have been associated with
various traits, including fruit size, color, leaf morphology, and
nutrient components. Bacterial wilt resistance, a polygenic
trait, has been explored using QTL mapping, identifying
major QTLs for broad-spectrum resistance. Fusarium
wilt resistance loci have also been mapped to specific
chromosomes (Table 3).

Transgenic approaches, such as Bt brinjal, have been
developed for resistance against brinjal shoot and fruit
borer. Despite biosafety data, commercial release in India
is pending, but it has been approved in Bangladesh and the
Philippines. Transgenic events have also been attempted to
reduce browning of cut fruits, induce parthenocarpy, and
enhance stress tolerance. The recent exemption of genome-

edited plants from stringent biosafety assessments in India
opens up new possibilities for stress tolerance studies and
potential commercial release.

Somatic Hybridization

Protoplast fusion is advantageous in overcoming the pre-
and post-fertilization barriers. This technique has enabled
transfer of desirable agronomic traits from wild species into
cultivated eggplants. A number of successful examples are
available in eggplants (Table 4).

Genomics

Genomics research in eggplant has historically lagged
behind other Solanaceous vegetables like tomato, potato,
and pepper. Initial efforts to sequence the eggplant genome
resulted in an incomplete and highly fragmented assembly.
Recently, there have been significant advancements in
eggplant genomics with the publication of a high-quality
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Table 3: Molecular mapping of major genes/QTLs in eggplant

Trait/map

Mapping population

Markers

Salient findings

References

15t interspecific linkage
map

Verticillium wilt
resistance

1t intraspecific linkage
map

Fusarium wilt resistance

S. melongena
X S.incanum
(91BC)

S. melongena x
S.linneanum
(48F,))

168 F2 individuals

305E40 x 67/3 (141 F2)

242 markers
(COSlI, SSRs,
AFLPs, CAPS,
and SNPs)

RAPD,
AFLP

181 RAPD and
AFLP

238 molecular

Constructed genetic map (1,085 cM) and
candidate genes involved in the biosynthesis
of chlorogenic acid, polyphenol oxidase, fruit
shape and prickliness.

QTL mapping

QTLs for fruit shape, fruit stem and calyx
pigmentation

305E40 has resistant gene Rfo-sal from S.
aethiopicum

Identified genes ERs 7 and 2 QTLs

Identified QTLs for parthenocarpy. Two QTLs
Cop3.1 and Cop8.1 were

Gramazio etal.,
2014

Sunseri et al.,
2003

Nunome et al.,
2001

Barchietal.,
2010

Lebeau et al.,
2013;
Salgonetal,
2017

Fukuoka et al.,
2012

markers

Bacterial wilt resistance  AG91-25 x SNPs
MM738 (F6 RIL
Population)

Parthenocarpy LS1934/Nakate- 326 common
Shinkuro (non- markers
parthenocarpy) x AE-P03
(parthenocarpy)

Prickliness Togenashi-senryo-nigo
(no-prickliness) x LS1934
(prickliness) (F2 population)

Peel colour AFLP,

SCAR

Fusarium wilt resistance  S. aethiopicum CAPS
(Rfo-saT)

Fusarium wilt Gene Fm1 SSR

Male sterility Rf SCAR

mapped onto chromosomes 3 and 8, Miyatake et al.,
respectively. QTL Cop8.7 was confirmedinaRIL 2012
population and useful for MAS.
Identified a semi-dominant Prickle (P/) gene Miyatake et al.,
locus on chromosome 6, causing the absence of 2020
prickles. Developed markers for MAS

Liao et al,, 2009

Indentified gene Rfo-sal on chromosome 2 for ~ Toppino et al,

MAS application 2008

Mapped on chromosome 2 Miyatake et al.,
2016

Mapped the gene Rf Khan and
Isshiki, 2016

genome assembly using Illumina, Nanopore, 10X genomics
sequencing, and Hi-C technologies. This assembly, based
on the inbred line HQ-1315, provides a valuable resource
for understanding the genetic makeup of eggplant. The
availability of a high-quality genome has facilitated the
identification of linked markers associated with various
traits and the mapping of quantitative trait loci (QTLs).
The eggplant genome, spanning 12 chromosomes, has
been extensively characterized, revealing millions of single
nucleotide polymorphisms (SNPs) within and between
different species. Resequencing studies have been
conducted on diverse accessions, such as S. melongena and
S.incanum, to explore genetic diversity and identify markers
for breeding.

In addition to the cultivated eggplant (S. melongena),
efforts have been made to sequence the genomes of
related species, such as the scarlet eggplant (S. aethiopicum).
These genomic resources have led to the identification of
thousands of protein-coding genes and millions of SNPs,
contributing to a deeper understanding of genetic diversity
within the Solanaceae family. Genomics applications extend

beyond basic sequencing, involving the development of
databases, such as the Eggplant Microsatellite DataBase
(EgMIDB), which cataloged perfect SSRs in the eggplant
genome. High-quality genome sequence data has been
utilized for SNP discovery, leading to the construction
of high-density SNP-based genetic maps used for QTL
mapping.

Functional applications of genomics in eggplant
include the identification and characterization of various
gene families. Transcriptome and genome data have been
employed to study transcription factors, such as WRKY and
APETALA2/ETHYLENE RESPONSIVE FACTOR, associated
with stress responses. Bioinformatics tools have enabled
the identification of putative loci for allergens in eggplant
fruits and the analysis of GRAS transcription factors involved
in growth, development, and stress responses.

The recent advancements in eggplant genomics,
facilitated by high-quality genome sequences and
associated tools, provide a solid foundation for further
research and applications in breeding, trait mapping, and
functional genomics (Table 5).
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Table 4: Successful examples of somatic hybridization in eggplant species

Fusion parents Fusion method Salient findings References
S. melongena S.aethiopicum gr.  Electrical Fertile hybrids and fusarium wilt resistant ~ Rotino et al. (1995)
Aculeatum
S. melongena S. aethiopicum gr.  Electrical Bacterial wilt resistant and high yield Daunay et al. (1993)
Aculeatum

S. melongena S. khasianum Electrical Sterile and fruit and shoot borer resistant  Sihachakr et al. (1988)

S. melongena S. integrifolium - Fertile and bacterial wilt resistant Kameya et al. (1990)

S. melongena S. nigrum Electrical Sterile and atrazine herbicide resistant Sihachakr et al. (1989)

S. melongena S. nigrum polyethylene glycol Sterile and herbicide atrazine resistant Guri and Sink (1988)

S. melongena S. sanitwongsei polyethylene glycol Fertile and bacterial wilt resistant Asao et al. (1994)

S. melongena S. sisymbrifolium polyethylene glycol Sterile hybrid resistant to mites and Gleddie et al. (1986)
nematodes

S. melongena S. torvum Electrical Sterile hybrid resistance to nematodes and  Sihachakr et al. (1989)
Verticillium dahlia

S. melongena S. torvum Polyethylene glycol Sterile hybrid partial resistance to mites Guri and Sink (1988)
and resistance to Verticillium wilt

S. melongena S. torvum Electrical Bacterial (Ralstonia solanacearum) and Collonnier et al. (2003)
Verticillium wilt resistant

S. melongena S. tuberosum Electrical Bacterial wilt resistance Yu et al. (2013)

S. integrifolium S. sanitwongsei uv Bacterial wilt resistance Iwamoto et al. (2007)

Table 5: Summary of recent research on eggplant genomics

Genotype Genomics technology

Salient findings

References

305E40 (Fusarium wilt resistant)
x 67/3 (susceptible)

RAD sequencing

First post-NGS genetic map of 415 SNP markers

eggplant

191 eggplant accessions GWAS

377 eggplant GWAS

accessions

123 DH lines

(MM738) (susceptible) x
EG203 (resistant to Ralstonia
pseudosolanacearum)

GBS

121 F, population
1836 (eggplant) x S.
linnaeanum

163 F, RIL
(305E40 x 67/3) intraspecific RIL
population

SLAF-seq

163 F, RIL
(305E40 x 67/3)

163 F, RIL
(305E40 x 67/3)

Identified about 10,000 SNPs and 1,000 InDels, of which
>2,000 SNPs were found useful for GoldenGate assay
genotyping

Located QTLs for seven traits associated with anthocyanin
content

Identified 384 SNPs in a collection comprising of mixture of
breeding lines, old varieties, and landraces from Asia and the
Mediterranean basin

Identified 219 SNPs, of which five SNPs the SUN and OVATE
homologs of tomato encoding for proteins promoting fruit
elongation and negative role in the growth and elongation
of fruit, respectively.

1,370 SNPs applied and identified two most stable QTLs
located on chromosomes 3 and 6

Applied 2,122 SNPs, of which identified 19 QTLs associated
with plant and fruit traits

High-quality genome sequence of male parent (67/3)
and resequencing of female parent (305E40) led to the
identification of 7,249 SNPs distributed on 12 eggplant
chromosomes

Constructed eggplant genetic map of 2169.23 cM with an
average marker distance of 0.4 cM, and determined genes
related to anthocyanin content and seed vigor.

Identified of several metabolomic QTLs (mQTLs) associated
metabolites belonging glycoalkaloid, anthocyanin, and
polyamines.

Barchi et al,, 2011

Barchi et al,, 2012

Cericolaetal,
2014,
Portis et al,, 2015

Liuetal, 2019b

Salgon etal,, 2017

Wei et al., 2020

Barchi et al.,
2019a

Toppino et al.,
2020

Sulli et al., 2021
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Eggplant genome (incomplete)

Covered 833.1 Mb spanning 74% of the eggplant genome,

Hirakawa et al.,

it was highly fragmented and not anchored to the eggplant 2014
chromosomes

Concluding Remarks and Future Prospects
Knowledge about available germplasm is crucial for
crop breeding programs, and for eggplant, this involves
the collection, conservation, and utilization of genetic
diversity. While wild eggplant species harbor various stress
resistances, their potential in breeding is limited due to
crossing barriers, genetic studies’ constraints, and lack of
genomics resources. Despite India’s rich genetic variability
in eggplant species, especially in its center of origin, only a
few have been utilized in breeding, mainly in genepools 1
and 2. Genepool 3 remains underrepresented, urging a focus
on crossability and heterotic ability for traits like disease
resistance and yield.

Eggplant breeding traditionally involves heterosis,
backcrossing, pedigree, bulk, and pure-line selection
methods. Recent priorities include parthenocarpy for
seedless fruit development, anthocyanin pigmentation
for quality, and rootstock breeding for disease resistance.
Hybrid eggplant development, reliant on male sterile lines,
is crucial for high yields. Genomic advancements enable
marker discovery through synteny with tomato and pepper
genomes, and re-sequencing coupled with SNP markers
accelerates breeding. Nutritional profiling and exploring
potential wild relatives for new genes and markers are
contemporary focuses.

With the availability of the eggplant genome, researchers
can leverage DNA methylation profiling, CRISPR/Cas9
technology for trait induction, and omics tools for
comprehensive analysis. Collaborative pre-breeding
projects at regional and national levels are recommended,
addressing quality, biotic and abiotic stresses. Male sterile
system exploitation, selection for quality fruit traits, and in
vitro regeneration for doubled haploid line development
are essential. Genome editing tools offer opportunities for
climate-resilient, resource-efficient, and environmentally
friendly eggplant improvement. In summary, harnessing
eggplant genetic resources and applying genomics tools
present vast prospects for future breeding advancements.
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