
Abstract 
Vegetable crops are a crucial component of the global food supply chain, with a vast range of variety, flavor profiles, and 
nutritional value, making them a staple meal of many cultures globally. India is the second-largest producer of vegetables 
in the world, commercially growing over 60 different types of vegetables for fresh consumption. Breeding vegetables 
is a challenging and complex process due to location-specific demand for color, shape, nutrition, taste, harvest stage of 
product, quality issues, and demand for year-round supply of fresh product. A combination of specialized knowledge, use 
of cutting-edge technology, availability of genetic resources and sufficient capital to effectively utilize these resources 
is a prerequisite for more innovative breeding. The present review summarizes the status of vegetable cultivation, 
common breeding methods, targeted traits, wild genetic resources, the modern breeding approaches, use of intelligence 
and machine learning approaches for improvement in vegetable crops for yield, quality, adaptability, safe product and 
consumers’ expectation.
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Introduction
The term ‘vegetable’ refers to the edible parts of the plants 
which are usually their leaves, roots, fruits, or seeds and can 
be consumed either cooked or raw. Vegetables are a vital 
element of a human healthy diet since they provide essential 
nutrients including vitamins (C, A, B1, B6, B9 and E), minerals 
(iron, zinc, selenium, iodine, and potassium), dietary fiber 
and phytochemicals (Silva-Dias, 2010). Dietary fiber-rich 
vegetables improve digestion, while also lowering the risk 
of obesity, diabetes, high cholesterol and heart disease 
(Behera et al., 2021). According to Rimm (1996), eating more 
vegetables lowers the risk of death by 20%, cardiovascular 
disease by 30% and cancer by 15%. A world vegetable survey 
showed that around 392 vegetable crops are cultivated 
worldwide, representing 70 families and 225 genera (Kays 
and Silva-Dias, 1995). Over 97 species of higher plants are 
being cultivated and consumed as vegetables in India (Nayar 
et al., 2003) and with close to 60 being grown commercially 
for fresh consumption (Kochhar, 1998). These crops belong 
to 20 different families such as Cucurbitaceae (25 crops), 
Fabaceae (16 crops), Brassicaceae (12 crops) and Solanaceae 
(6 crops). The world’s total vegetable production is estimated 
to be 1,155 mt in 2021, with China being at top position with 
a production of 600 mt which accounts for 52.18% of the 
world. The top 5 countries (China, India, the United States 
of America, Turkey and Vietnam) account for 70.36% of total 
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world’s production (https://www.statista.com). As far as India 
is concerned, it is the largest producer of ginger (2.23 mt) 
and okra (6.47 mt) in the world, while ranking 2nd in potato 
(54.23 mt), dry onion (26.64 mt)), cauliflower and broccoli 
(9.25 mt), brinjal (12.87 mt) and cabbage (9.56 mt) (FAO, 2021).

Vegetable breeding is more complex and challenging 
compared with grain crops where grain is the primary 
product, however in vegetables different plant parts are 
of economic importance such as leaves, stems, roots, 
flowers, and fruits. Moreover, the location-specific demand 
for color, shape, nutrition, taste, product maturity stage, 
quality issues, year-round supply and many more makes 
breeding for specific traits more complex. The vegetable 
is a broad segmented area of research, for example, in 
Brinjal, there are more than 42 types of segments based on 
the morphological character of the fruit is present (Ghuge 

and Mirza, 2021). With its prime goal to improve the quality 
and quantity of total production, vegetable breeding is the 
process of developing new varieties of vegetables that have 
improved traits of economic importance, namely increased 
yield, disease and insect-pest resistance, and improved 
nutritional content. Moreover, consumers’ demand for 
safe and healthy food, urbanization and the emergence of 
supermarket chains are all driving changes worldwide. These 
modifications have increased the diversity and availability 
of vegetables as well as improved production and delivery 
systems. In addition, there is a growing demand for veggies 
that are easier to transport and have longer shelf-life. 

Conventional Breeding Methods and Targeted Traits
The process of vegetable breeding began to evolve in the 
18th century with the work of plant breeders such as Gregor 

Table 1: Common breeding methods and targeted traits in some of the vegetable crops

Crop Common breeding methods Biotic and abiotic stress resistance Yield, fruit quality and other traits

Tomato Hybrid breeding, Introduction, Pure 
line selection, Pedigree method, 
Bulk method, Single seed descent, 
Backcrossing

Biotic: Fusarium wilt, Verticillium wilt, late 
blight, early blight, Septoria leaf spot, 
anthracnose, bacterial wilt, bacterial 
canker, tomato yellow leaf curl virus, root 
knot nematode (RKN), fruit borer, white 
fly
Abiotic: Heat, drought, cold/ chilling, salt, 
herbicide

Earliness, yield, indeterminate cultivars 
for greenhouse production
Fresh tomato: Large round fruit with good 
firmness, shelf life, uniform fruit size, 
shape, and free from external blemishes
Processing tomato: Dark red, pH < 
4.4, high TSS (4.5-7) and high alcohol 
insoluble solids (AIS)

Brinjal Hybrid breeding, Introduction, Pure 
line selection, Pedigree method, 
Bulk method, Single seed descent, 
Backcrossing

Biotic: Bacterial wilt, phomopsis blight, 
little leaf, RKN, shoot and fruit borer, 
jassids and epilachna beetle
Abiotic: Heat 

High yield, earliness, fruit shape, size, 
color, low solanine content
Upright plant free from lodging, less 
deeded, soft flesh

Chilli and 
Bell pepper

Hybrid breeding, Introduction, Pure 
line selection, Pedigree method, 
Back cross method

Biotic: Fruit rot, Cercospora leaf spot, 
powdery mildew, bacterial leaf spot, 
Phytophthora root rot, RKN, TMV, thripts, 
mites, aphid, fruit borer
Abiotic: Heat, drought, salinity

Bell pepper: Oblate or round fruit, pleasing 
flavour, high sugar/acid ratio, high 
pigment content and vitamin C
Chilli: High yield, earliness, long fruit, high 
capsaicin, high oleoresins

Okra Hybrid breeding, Mass selection, 
Pedigree method, Mutation

Biotic: YVMV, fusarium wilt, Cercospora 
leaf spot, fruit rot, fruit and shoot borer, 
jassids and white fly
Abiotic: Low temperature, salinity

Dark green, tender, thin, medium long, 
free from trichomes, smooth, 4-5 ridges 
fruits; early, prolonged harvest, short 
internode, optimum seed setting ability

Vegetable 
pea

Pure line selection, Pedigree 
method, Bulk method, Introduction, 
Single seed descent, Back cross 
method, Mutation breeding

Biotic: Downy mildew, powdery mildew, 
rust, wilt, leaf miner, aphids, pod-borer 
and pea stem fly
Abiotic: Frost

Log attractive green pod with more 
seeds/pod; sweet, high shelling 
percentage, suitability to freezing and 
canning

French bean Introduction, Pure line selection, 
Pedigree method, Single plant 
selection 

Biotic: Bean common mosaic virus, bean 
yellow mosaic virus, curly top, halo blight, 
common blight, bacterial wilt, brown spot, 
root rot, white mold, anthracnose, angular 
leaf spot, rust, powdery mildew, pod borer, 
pea stem fly. Abiotic: Drought, heat, cold

Non-stringy, tender, fleshy, free from 
inter-locular spaces and long pod; 
slow seed development, early, photo-
insensitivity, Wider adaptability

Cowpea Pedigree method, Pure line 
selection; Back cross method, 
Mutation breeding

Biotic: Anthracnose, Cercospora leaf 
spot, powdery mildew, Fusarium wilt, 
Ascochyta blight, bacterial blight, 
bacterial postules, cow pea yellow mosaic 
virus, hairy caterpillar, leaf hopper, aphids, 
thrips, pod borer, pod sucking insects
Abiotic: Drought, heat, cold

Early, erect and determinate plant type 
for vegetable and seed type cultivar; 
spreading plant for fodder type; 
photo-insensitive, short tender pods for 
whole pod processing, long tender and 
stringless pod for fresh consumption



Behera et al.: Vegetable Breeding		  133

Cauliflower Hybrid breeding, Population 
improvement, Backcross method, 
DH

Biotic: Black rot, sclerotinia rot, alternaria 
blight, Erwinia rot
Abiotic: Heat tolerance

Non-ricy, compact and bract free protected 
curd with retentive white color; better 
seeding ability; robust CMS lines, DH inbreds

Cabbage Hybrid breeding, Population 
improvement, Backcross method, 
DH 

Biotic: Black rot, cabbage yellow, cabbage 
butter fly, aphids and diamond back 
moth
Abiotic: High temperature

Longer field staying capacity; narrow, 
short and soft core; compact and round 
head, short stem, robust CMS lines, DH 
inbreds

Radish Hybrid breeding, Population 
improvement, Backcross method, 
DH 

Biotic: Alternaria blight, white rust, radish 
mosaic virus, flea beetle, painted bug, 
aphids
Abiotic: Heat, drought, rain

Early, wide adaptability, smooth root, 
delayed pithiness and bolting, pungency 
as per consumers choice

Carrot Hybrid breeding, Population 
improvement, Backcross method, 
DH 

Biotic: Alternaria blight, Cercospora leaf 
spot
Abiotic:

Dark root color; blunt, smooth and scar-
free root; uniform root shape and size; 
narrow, short and self-colored core; high 
sugar and dry matter content; delayed-
bolting; Early

Turnip Hybrid breeding, Population 
improvement, Backcross method, 
DH

Biotic: Club root, powdery mildew, 
turnip mosaic virus, white rust, phyllody, 
cabbage root fly, and turnip root fly

Early, uniform root color, smooth root, 
delayed-bolting, uniform root shape and 
size, high dry matter

Garden beet Hybrid breeding, Introduction, Mass 
selection

Biotic: Downy mildew, powdery mildew Early, uniform root color, smooth root, 
delayed-bolting, uniform root shape and 
size, monogerm seed 

Onion Population improvement, Hybrid 
breeding, Backcross method

Biotic: Purple blotch, basal root, stem 
psyllium blight, bacterial storage rot, 
thrips
Abiotic: Drought, heat, salinity

Longer dormancy and storage life, thin 
necked bulb, uniform bulb color, size 
and shape, high TSS, pungent, wider 
adaptability

Cucumber Hybrid breeding, Population 
improvement, Backcross method

Biotic: Powdery mildew, downy mildew, 
anthracnose, cucumber mosaic virus and 
fruit fly 
Abiotic: drought, cold, salinity

Early, high female to male sex ratio, 
attractive and smooth fruit surface, 
long and cylindrical fruit shape, free 
from bitterness, crook neck and carpel 
separation, less and soft seeded

Muskmelon Controlled inbreeding, Pedigree 
method, Backcross method, Hybrid 
breeding

Biotic: Powdery mildew, downy mildew, 
virus, red pumpkin beetle, fruit fly and 
aphids
Abiotic: drought, cold, salinity

Attractive round/spherical fruit shape, 
thick flesh with attractive color, small 
seed cavity, sweet, juicy, musky 
flavorsome fruits, high TSS (> 10%), tough 
netted fruit skin

Watermelon Pedigree method, Backcross 
method, Hybrid breeding

Biotic: Virus, Fusarium wilt, anthracnose, 
powdery mildew, cucumber aphid, fruit 
fly, cucumber beetle, red pumpkin beetle
Abiotic: drought, cold, salinity

Earliness, pistillate flowers at lower node 
number
Tough-skinned fruits for longer distance 
transport, TSS (> 10%)
Fruits with smaller and fewer seeds with 
attractive deep red flesh
Firm flesh, intermediate fruit shape 
between typical long and round, high yield

Squash and 
pumpkin

Inbreeding, Hybrid breeding Biotic: Powdery mildew, viruses and red 
pumpkin beetle
Abiotic: drought, cold, salinity

High fruit yield, early, first pistillate flower 
at early node number, high female to 
male ratio
Yellow and mottled skin of fruit, non-
ridge fruit surface, thick fruit flesh and 
small seed cavity
Round/oblong/flat round fruit shape, 
orange flesh color, rich in beta-carotene

Bottle gourd Inbreeding, Hybrid breeding Biotic: Powdery mildew, red pumpkin 
beetle and fruit fly
Abiotic: drought, cold, salinity

High yield, greater fruit number, fruit 
weight
Earliness, pistillate flower at early nod 
enumber, high female to male ratio 
Round, long and club shaped fruit, sparse 
hairs persisting on skin
Non-fibrous flesh at edible stage, non-
bitter fruit, attractive green fruit
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Bitter gourd Inbreeding, Pureline selection, 
Hybrid breeding

Biotic: Red pumpkin beetle and fruit fly
Abiotic: drought, cold, salinity

Early fruiting, high female:male ratio, 
whitish green to glossy green fruit color
Less ridge fruit surface, thick fruits for 
stuffing, fruit size (small: 7.5-10 cm, 
medium: 10-15 cm, long: 15-20 cm, xtra 
long: 20-40 cm)
Immature seeds for longer period during 
green edible stage, high-yield

Ridge gourd 
and Sponge 
gourd

Inbreeding, Pureline selection, 
Hybrid breeding

Biotic: Powdery mildew, downy mildew, 
fruit fly, beetle
Abiotic: drought, cold, salinity

Earliness, high female to male sex ratio, 
uniform thick cylindrical fruits free from 
bitterness
Tender, non-fibrous fruits for a longer 
time, high fruit yield (number and weight)

Potato Clonal selection Biotic: Late blight, potato viruses (PVX, 
PVY, PLRV etc.), common scab, wart, 
nematode, bacterial wilt, storage rot, 
aphids, white fly, potato tuber moth
Abiotic: Heat, drought, salinity, cold

High tuber yield, earliness, photoperiod 
insensitive, better-keeping quality
Quality tubers: round, smooth skin, 
medium size, shallow eyes, free from 
greening, high vitamin C), high dry 
matter for processing purposes (French 
fries, chips etc), low sugar

Mendel who developed the basic principles of inheritance 
and genetic variation. The early plant breeding efforts 
were focused on improving crop yield. During the 20th 
century, vegetable breeding advanced significantly with 
the introduction of new technologies such as hybridization, 
backcross breeding, heterosis breeding, mutation breeding 
and genetic engineering. However, conventional breeding 
has now been assisted by genetic and molecular techniques 
to develop improved varieties with traits of specialty, quality 
and tolerance. The common breeding goals for all vegetable 
crops are higher yield, earliness, wider adaptability, tolerance 
to stresses and better quality (Behera et al., 2023). To date, a 
total of 553 vegetable varieties in 30 vegetable crops have 
been recommended through AICRP-VC for cultivation in 
India for various agro-climatic zones, including 329 OP 
varieties, 168 hybrids and 56 resistant to different biotic and 
abiotic stresses (Behera et al., 2021). The common breeding 
methods for targeted traits in major vegetable crops are 
summarized (Table 1).

Genetic Resources: The Current Status 
Genetic diversity is a fundamental requirement for 
successful plant breeding programs, as it provides the 

necessary variation upon which selection can be based. 
The genetic diversity of vegetable cultivars, however, has 
decreased significantly over the past seven decades due 
to various factors, including the influence of commercial 
markets and societal forces. The decline in genetic diversity 
is primarily attributed to breeding techniques that favor 
uniformity, leading to the widespread cultivation of 
improved and hybrid vegetable cultivars with limited 
genetic diversity. Moreover, the professionalization of the 
industry and commercial market demands have contributed 
to a reduction in the number of farmers storing seeds, 
creating a new threat to genetic diversity conservation 
efforts. ICAR-NBPGR is the national nodal agency for crop 
genetic resource conservation, including vegetable crops 
followed by various breeding organizations. About 58000 
accessions of vegetable crops have been conserved with 
ICAR-NBPGR national gene bank (NBPGR Annual Report, 
2021; Table 2). More than 75% of this diversity is of exotic 
origin. Additionally, ICAR-IIHR and ICAR-IIVR hold around 
9000 and 6500 germplasm, respectively of various vegetable 
crops under active collection (Behera et al., 2021). India is also 
fortunate to hold genetic diversity for some unique traits 
in vegetable crops that are found nowhere in the world as 
stated by Tiwari et al. (2023). Furthermore, it is important to 
determine how well novel variations can be used to aid in 
the development of new varieties capable of responding to 
new environmental challenges (Devi et al., 2023).

Wild relatives for genetic improvement
Vegetable wild relatives are the wild, progenitors and closely 
related species have played a crucial role in providing 
beneficial traits for vegetable improvement in terms of 
ideotype, agronomic, nutritional and stresses (Sharma et al., 
2023). Among the different vegetable crops, potato (Solanum 
tuberosum) stands out as particularly vulnerable to biotic and 
abiotic stresses due to its genetic uniformity. Late blight is 

Table 2: Status of cultivated and wild germplasm of vegetable crops 
at ICAR-NBPGR (Pandey et al., 2019)

Vegetables Approx. of germplasm holding

Solanaceous vegetables 14646

Cucurbitaceous vegetables 16750

Leguminous vegetables 5435

Okra 4235

Brassica and Cole crops 1776

Bulbous vegetables 4769

Root vegetables 8298

Leafy vegetables 2084
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a devastating disease caused by the Phytophthora infestans 
that affects potato production globally. The impact of this 
disease is exemplified by the Irish potato famine in the mid-
nineteenth century. Over the years, efforts have been made 
to develop resistant potato cultivars successfully through the 
introgression of resistance genes from wild and cultivated 
species such as S. demissum, S. stoloniferum, S. tuberosum 
ssp. andigena, and S. phureja. Additionally, diploid wild 
potato species like Solanum pinnatisectum, S. etuberosum, 
S. cardiphyllum, S. acaule, S. brachistotrichum, S. jamesii, S. 
polyadenium and S. stoloniferum possess many novel genes 
for late blight resistance, virus resistance, high dry matter 
content, etc. Tomato breeding programs have also utilized 
wild tomato species to develop cultivars with improved 
traits. More than 40 resistance genes have been derived 

from species such as S. peruviannum, Solanum pennellii 
var. pennellii, S. cheesmanii and S. pimpinellifolium. These 
species have been used to improve many desirable traits 
namely soluble solid content, fruit color, and adaptation to 
harvesting, resulting in the development of improved tomato 
cultivars (Rick and Chetelat, 1995). In case of brinjal (Solanum 
melongena), a wild relative Solanum viarum is highly resistant 
to shoot and fruit borer (Pugalendhi et al., 2010), and wild 
Andaman species S. torvum exhibit recessive gene action for 
resistance to bacterial wilt (Bainsla et al., 2016). Certain wild 
species of okra A. manihot, A. tuberculatus and A. moschatus 
are reported to have resistance genes for yellow vein mosaic 
disease (YVMD), shoot and fruit borer, and leaf hopper, 
respectively (Rana et al., 1991). Further A. caillei, A. manihot, A. 
moschatus are resistant to YVMD, while A. caillei, A. manihot, A. 

Table 3: Vegetable wild relatives for biotic and abiotic stresses

Crop Wild species Trait Reference

Tomato Solanum pimpinellifolium L. Fusarium wilt, late blight, early blight, Bacterial wilt, 
Bacterial spot, Gray leaf spot, leaf mould, TSWV bacterial 
speck and bacterial canker 

Khazaei and Madduri et al. 
(2022)

S. habrochaites S. Knapp and D. M. 
Spooner

Late blight, Leaf mold, TYLCV, ToMV, Powdery mildew, 
Bacterial canker, gray mould

S. peruvianum L. TYLCV, TSWV, Root-knot
Nematodes, ToMV, Verticillium wilt, Fusarium crown

S. chilense (Dunal) Reiche TYLCV, TSWV, Bacterial canker, powdery mildew, gray mould

S. pennellii Correll Fusarium wilt, alternaria stem canker, Bacterial spot, wild 
range of insects

S. galapagense S. C. Darwin and Peralta whitefly

Brinjal Solanum torvum Root-knot nematodes, bacterial and Verticillium wilt Syfert et al. (2016)

S. violaceum Ortega Fusarium wilt Rao and Kumar (1980); 
Syfert et al. (2016)

S. sisymbriifolium Lam Verticillium wilt, Bacterial wilt, fruit and shoot borers, 
root-knot nematodes, spider mite

Syfert et al. (2016)

S. incanum L. Fusarium wilts Rao and Kumar (1980)

Cucumber Cucumis hystrix, C. metuliferous Gummy stem blight, Downy mildew, Cucumber mosaic 
Virus, Zucchini yellow mosaic virus and Papaya ringspot 
virus watermelon strain Meloidogyne sp.

Chen et al. (2008)

Cucurbita 
spp 

Cucurbita argyrosperma C. Huber 
subsp. sororia (L. H. Bailey) L. Merrick 
and D. M. Bates

Resistant to BYMV and TmRSV  Khoury et al. (2019)

C. cordata S. Watson Drought-tolerant; resistant CMV, TRSV, BYMV Khoury et al. (2019)

C. digitata A. Gray Drought-tolerant; resistant to CMV, TmRSV

C. ecuadorensis H. C. Cutler and 
Whitaker

Resistant to papaya ringspot virus, WMV, powdery 
mildew, downy mildew

C. foetidissima Kunth Drought-tolerant; resistant to CMV, TRSV, BYMB, WMV, 
and squash vine borer

C. lundelliana L. H. Bailey Resistant to SqLCV, CMV, powdery mildew; used as a 
genetic bridge for breeding noninterfertile species

C. okeechobeensis (Small) L. H. Bailey 
subsp. martinezii (L. H. Bailey) T. C. 
Andres and Nabhan ex T. W. Walters 
and D. S. Decker

Resistant to CMV, BYMV, TRSV, bacterial leaf spot, 
powdery mildew, downy mildew
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C. okeechobeensis (Small) L. H. Bailey 
subsp. okeechobeensis

Resistant to CMV, BYMV, TRSV, bacterial leaf spot, 
powdery mildew, downy mildew

C. palmata S. Watson Drought-tolerant; resistant to CMV, TRSV, BYMV, TmRSV

C. pedatifolia L. H. Bailey Drought-tolerant; disease resistance unstudied; 
potential as bridge species between xerophytic and 
mesophytic species

C. radicans Naudin Drought-tolerant; resistant to CMV, TmRSV; BYMV; 
production of potato-sized tubers

C. x scabridifolia L. H. Bailey Drought-tolerant

Peas Pisum fulvum Rust, virus, powdery mildew resistance and Drought 
tolerance

Aryamanesh et al. (2012); 
Pratap et al. (2021)

P. elatius Pulse beetle tolerance

Bean Phaseolus acutifolius Drought-tolerant and subzero temperatures tolerance Pratap et al. (2021)

Cowpea Vigna unguiculata group 
sesquipedalis

Heat and salinity Pratap et al. (2021)

V. heterophylla, V. kirkii, V. exilis, V. 
trilobata, and V. riukiensis

drought tolerance Kapazoglou et al. (2023)

V. minima and V. indica tolerant to acidic and limestone type of soils Tomooka et al. (2011)

V. luteola, V. marina, V. nakashimae, 
V. vexillata var. macrosperma, V. 
riukiuensis, and V. trilobata

Salinity tolerance Kapazoglou et al. (2023)

V. vexillata Water-logging-tolerant Yoshida et al. (2020)

Wild cowpea relative – line TVNu 1158 Aphid Pratap et al. (2021)

Onion Allium galanthum, Allium altaicum, 
Allium pskemense

Anthracnose Galván et al. (1997); Malik 
et al. (2021)

Allium fistulosum Allium 
schoenoprasum Allium pskemense 
Allium roylei Allium galanthum

Fusarium basal rot Galván et al. (2008); Malik 
et al. (2021)

Allium schoenoprasum Allium roylei Purple blotch resistance Nanda et al. (2016); Malik 
et al. (2021)

TYLCV: Tomato yellow leaf curl virus; CMV: Cucumber mosaic virus; ToMV: tomato mosaic virus; TSWV: Tomato spotted wilt virus; BYMV: Bean 
Yellow Mosaic Virus; TmRSV: Tomato ringspot virus; TRSV: Tobacco ring spot virus; WMV: Watermelon mosaic virus; and SqLCV: Chinese squash 
leaf curl virus

Table 4: Male sterility system in vegetable crops and its use for hybrid development in India

Crop 
Male sterility system

Development of MS lines and hybrids in India
Type, gene and inheritance Source and Reference 

Chilli and 
Capsicum

GMS (ms) Martin and Crawford (1951) in C. 
frutescens; California Wonder by 
Shifriss and Rylsky (1972)

CH-1 and CH-3 (Hundal and Khurana 
1993)

CGMS
(S-cytoplasm, ms)

P.I. 164835 by Peterson (1958); 
C. frutescens by Csillery (1983)

Kashi Surkh, Kashi Early, Kashi Tej and 
Kashi Ratna (Kumar et al., 2007, Kumar 
et al., 2016); Arka Meghana, Arka Sweta, 
Arka Harita, Arka Khyati (Prasanth and 
Kumary, 2014); GAVCH-1 

GEMS, GMS (ms) Dong et al. (2023)

Tomato GMS (ms) Rick (1945)

GMS (ps) Czech cv. Vrbicanske Nizke by 
Tronickova (1962)

Pusa Divya

GMS (sl) Sawhney (1974)

CGMS 
(S-cytoplasm)

L. peruvianum, + L. pennellii by Petrova 
et al. (1999)

GEMS, GMS (ms) CRISPR/Cas9-based GMS (Du et al. 2020)
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Brinjal GMS (ms) Jasmin (1954)

CGMS
(S-cytoplasm)

S. gilo by Fang et al. (1985); S. violaceum 
by Isshiki and Kawajiri (2002); S. 
virginianum by Khan and Isshiki (2008); 
S. kurzii by Khan and Isshiki (2009); and 
S. aethiopicum by Khan and Isshiki (2010)

MS lines from S. aethiopicum × S. melongena 
cv. Punjab Barsati (Garcha and Dhatt, 2017)

Muskmelon GMS (ms) Bohn and Whitaker (1949) Punjab Hybrid, Punjab Anmol and MH-27 
(Nandpuri et al., 1982)

Watermelon GMS (ms) Irradiated population of cv. Sugar 
Baby (Watts, 1962)

Cucumber GMS (ms) Han et al. (2018)

Carrot Petaloid-CMS
(Sp-Cytoplasm)

North American wild carrot Munger in 
1953

CMS lines (Kalia et al., 2019; Singh and 
Karmakar 2021)

Pusa Nayanjyoti, Pusa Vasuda and 
VRCARH-3 (VRCAR-214×VRCAR-85)

Brown anther-CMS
(Sa-Cytoplasm)

Tendersweet (Welch and Grimball 
1947); Thompson (1961)

GUM-CMS in wild relative D. carota subsp. gummifer, MAR-CMS in wild relative 
D. carota subsp. maritimus and GAD-CMS in wild relative D. carota subsp. 
gadecaei by Nothnagel et al. (2000)

Onion CGMS
(S-Cytoplasm)

cv. Italian Red 13–53 by Jones (1936); 
and cv. N-2-4-1 by Patil et al. (1973)

Arka Kirtiman and Arka Lalima (Veere 
Gowda et al., 1998); Hybrid-63 and 
Hybrid-35; DOGR Hy-4 and DOGR Hy-7 
(Gupta and Singh, 2016)

CGMS
(T-Cytoplasm)

cv. Jaunepaille des Vertus by 
Berninger (1965)

CMS
(S-Cytoplasm)

cv. Nasik White Globe in 1987 
(Pathak, 1994)

Beet root CGMS
(S-Cytoplasm, xxzz)

Owen cytoplasm from cv. US1 by 
Owen (1945)

I-12 CMS from wild beets by Mikami et 
al. (1985)

BMC-CMS cytoplasm from wild beet 
Beta maritime by Mann et al. (1989)

Spinach beet CGMS MS in OP population of cv. VRPLK-31 
by Singh and Bhuvaneswari (2022)

Radish CMS
(S-Cytoplasm)

Ogura CMS in a Japanese radish by 
Ogura (1968)

CMS lines and hybrid Kashi Rituraj (Singh et 
al. 2018, Singh and Singh 2020)

77-01A CMS by He et al. (1981)

Kosena CMS by Ikegaya (1986)

NWB CMS by Nahm et al. (2005)

805A CMS by Wang et al. (2012)

GMS DCGMS by Lee et al. (2008)

Cole crops
(Brassica 
oleracea)

CMS Source of CMS: Raphanus sativus, B. nigra, B. napus, B. 
juncea, B. tournefortii. Erucastrum canariense and Diplotaxis 
muralis

Broccoli CMS (Ogura) From radish by Bannerot et al. (1974); 
McCollum (1981)

CMS lines (Sharma and Kumar, 2002)

GMS (ms) Cole (1959)

GMS (Ms) Han et al. (2019)

Cabbage CMS (Ogura) From radish by Bannerot et al. (1977) CMS lines (Parkash et al., 2015)

Pusa Hybrid-81, KtCBH-822, Pusa Red 
Cabbage Hybrid-1
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moschatus and A. tuberculatus are resistant to shoot and fruit 
borer and leaf hopper (Gangopadhyay et al., 2017). Among 
different species of cucurbits, wild Cucumis figarei has been 
found to possess absolute resistance to cucumber green 
mottle mosaic virus (CGMMV), Fusarium wilt, and high-level 
resistance to downy mildew (Pan et al., 1996). Additionally, C. 
figarei, C. myriocarpus, C. africanus, C. meeusii, C. ficifolius and 
C. zeyheri have also been reported to be resistant to CGMMV 
virus (Rajamony et al., 1990). Furthermore, the wild species C. 
hardwickii has been observed to exhibit high-level resistance 
to powdery and downy mildew diseases (Pitchaimuthu et 
al., 2012), making it a potential source for increased yield 
in pickling cucumbers (Horst et al., 1978). The identification 
and incorporation of such resistance traits from wild cucurbit 
species into commercial cultivars through conventional 
breeding or genetic engineering approaches could provide 
an effective and sustainable means of controlling diseases 
and enhancing crop yield in cucurbit production. Table 3 
summarizes wild relatives for biotic and abiotic stresses in 
some of the important vegetable crops.

Hybrid Seed: A Driving Force in Vegetable Production 
Hybrid seed development has played a crucial role in the 
growth of vegetable production around the world. Self-
incompatibility (SI) and male sterility (MS) mechanisms have 
been broadly utilized in hybrid seed production of various 
vegetable crops with certain advantages and disadvantages. 
While SI system is commercially limited to Brassica species 
such as broccoli, cauliflower, and cabbage, MS system has 
been utilized in number of vegetables. Further, genetically 
engineered male sterility (GEMS) has been created in 
various crops through various biotechnological tools such 
as CRISPAR/Cas9 and transgenic. The male sterility system 
in vegetable crops and its use for the development of MS 
lines and hybrids in India has been summarized (Table 4).

Advancements in Vegetable Breeding Technology
Our ability to understand and regulate genetic diversity in 
crop plants has undergone a radical transformation since the 
early 1980s due to technological advancements. Techniques 
such as genetic engineering, marker-assisted breeding 
and genomic selection have been developed for precise 
manipulation of plant genetics. Several plant genomes 
have been sequenced and assembled as a result of the 
advent of high-throughput sequencing tools and analytical 
techniques (Table 5). The development of dense and ultra-
dense molecular linkage maps, the detection of structural 
variants, and the application of molecular markers are the 
major outcomes (Simko et al., 2021). In order to identify the 
chromosomal locations of genes and QTLs responsible for 
plant phenotypes which are essential for crop development, 

CMS From B. nigra by Pearson (1972)

From B. napus by Chiang and Crete (1987)

GMS (ms) Nieuwhof (1961), Sampson (1966)

GMS (Ms) Fang et al. (1997)

Cauliflower CMS (Ogura) From broccoli by Hoser-Krauze (1987) CMS lines (Sharma et al., 2004, Verma and 
Kalia 2011, Dey et al., 2011, Singh et al., 
2022, Singh and Karmakar, 2022)

Pusa Snowball Hybrid-1, Pusa Snowball 
Hybrid-2, Pusa Hybrid-301, Pusa 
Hybrid-3, Pusa Hybrid-102

GMS (ms) Nieuwhof (1961) 

GMS (Ms) Ruffio-Chable et al. (1993)

Okra GMS (ms) Thombre and Deshmukh (2006) MS lines (Thombre and Deshmukh, 2006; 
Pitchaimuthu et al., 2012)

Arka Nikita

Table 5: Sequenced Genome of Vegetable Crops

Crop Estimated 
genome size References 

Cucumber 367.0 Huang et al. (2009)

Musk melon 450.0 Gonzalez et al. (2010)

Potato 844.0 The potato genome sequencing 
consortium (2011)

Chinese 
cabbage 

529.0 The Brassica rapa genome Sequencing 
project consortium (2011)

Tomato 900.0 The tomato genome consortium (2012)

Water melon 425.0 Guo et al. (2013)

Brinjal 1126.0 Hirakawa et al. (2014)

French bean 587.0 Schmutz et al. (2014)

Chilli 3480.0 Kim et al. (2014)

Cabbage 630.0 Liu et al. (2014)

Pumpkin 271.4 Zhang et al. (2015)

Carrot 473.0 Iorizzo et al. (2016)

Peas 4450.0 Kreplak et al. (2019)
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linkage mapping and genome-wide association mapping 
studies have been extremely helpful. 

Biotechnological-assisted breeding
Several studies highlight the use of various biotechnological 
approaches including marker-assisted selection (Singh et 
al., 2020; Simko et al., 2021; Shweta and Sood, 2021), marker 
assisted backcrossing (Phan and Sim, 2017), somaclonal 
variation and tissue culture (Pradhan et al., 2021), etc. for the 
vegetable improvement. For nearly two decades, linkage 
analysis has been extensively conducted to identify QTL of 
various economic traits using segregating populations derived 
from biparental crosses F2, backcross (BC), doubled haploid 
(DH) and recombinant inbred line (RIL) populations. Several 
QTLs has been mapped in various crops for many economic 
traits (Shweta and Sood, 2021). Recently, predictive breeding 
via genomic selection (GS) has become an essential tool in crop 
improvement. GS refers to selecting individuals’ performance 
within a population based on genomic estimated breeding 
values (GEBV). The decreasing cost of DNA sequencing renders 
GS affordable and powerful by providing high-density markers 
across the genome. GS has been shown to be more efficient 
over traditional MAS when dealing with small-effect QTL. 

Gene editing
CRISPR/Cas9 technology is a powerful tool that allows for 
precise and efficient manipulation of the genome. This 
technology has the potential to speed up the breeding 
process, increase precision, and reduce the need for chemical 
and radiation-based mutation breeding. Recent reviews by 
Kim et al. (2021) and Devi et al. (2022) has summarized the 
gene-edited vegetables like tomato, brinjal, potato, carrot, 
watermelon, pumpkin, lettuce, Chinese cabbage, chicory, 
cabbage and Chinese kale for heat and drought tolerance, salt 
tolerance, powdery mildew, ripening, lycopene content, etc.

High-throughput plant phenotyping (HTTP)
Genomics has had a significant impact on vegetable 
breeding. With the cost of genome sequencing decreasing 
drastically, scientists have been able to sequence a large 
number of genotypes for allele mining and association 

mapping. However, a bottleneck still exists in linking 
physiological and phenotype data to the sequenced genome 
data (Ilakiya et al., 2020). Advancements in technology have 
allowed for the rapid and accurate measurement of a wide 
range of plant traits, such as yield, disease resistance, and 
nutritional content. The high throughput plant phenotyping 
platforms would help the vegetable breeder in saving their 
time, as conventional phenotyping is a time-consuming 
process. Many studies have been devoted for HTTPs in various 
vegetable crops such as tomato (Szuvandzsiev et al., 2014); 
Bean (Rodriguez-Moreno et al., 2008); Cabbage (Chiu et al., 
2015); Watermelon (Tamburini et al., 2017); Spinach (Zhu et al., 
2019), etc. Various software has been used to analyse the root 
(KineRoot, PlaRoM, EZ-Rhizo), shoot (Traitmill, Leafanalyser, 
Lamina) and seed parameters (ImageJ, SmartGrain) etc.

Artificial intelligence (AI) and Machine learning (ML)
Cutting-edge technologies for crop genome sequencing and 
phenotyping combined with advances in computer science 
are currently fuelling a revolution in vegetable science (Sharma 
et al., 2021). AI also called machine intelligence is a domain in 
computer science that instructs machines on how to replicate 
human physical actions and react like humans. Advancements 
in AI and ML can be used to predict the performance of the 
plants and can be used to analyze data from high-throughput 
phenotyping, genotyping and sequencing which leads to 
better selection of plants with desirable traits. AI is currently 
being used for vegetable grading and sorting through color 
and shape (Farooq and Gill, 2022). Similarly, ML has been 
widely used to decipher the relationship between DNA 
sequences and observed phenotypes in both conventional 
and in vitro plant breeding research. ML is currently in use for 
the assessment of seed quality, disease detection and control, 
prediction of climatic variations, crop monitoring and yield 
prediction (Sharma et al., 2021). 

Speed breeding
Breeding crops in a conventional way demands considerable 
time of usually 8 to 10 years, space, and inputs for 
selection after initial crosses are performed with parental 
genotypes. Speed breeding is likely to reduce this time 

Table 6: Techniques for rapid generation advancement in some of the vegetables

Crop Technique DTF Generation/year Selection method Reference

Amaranth Photoperiod and temperature 28 6 SSD Stetter et al. (2016)

Faba bean Plant hormones, photoperiod, light intensity and 
immature seed

29-32 7 SPD Mobini et al. (2015); 
Mobini et al. (2020)

Peas Plant hormones, photoperiod and immature seed 
germination

33 5 - Ribalta et al. (2019)

hydroponic system, with a 22-h photoperiod supplied 
by fluorescent T5 tubes, a temperature of 20 ± 2 C

46-57 5 - Cazzola et al. (2020)

Peppers Modification in light intensities, photoperiods, and red-
to-far-red ratios

39 4 - Liu et al. (2022)

Abbreviations: DTF: days to flower; SPD: single pod descent; SSD: single seed descent
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through manipulation of environmental conditions such 
as photoperiod, temperature, moisture, plant nutrition, 
hormone and tissue culture etc. under which crop 
genotypes are grown aiming to accelerate flowering and 
seed set, to advance to the next breeding generation as 
quickly as possible (Table 6). 

Major challenges and Strategies for improvement 

Need for Germplasm creation and conservation
The vegetable crops are facing a major challenge of genetic 
erosions as much area is under hybrid cultivation with a 
narrow genetic base as a result of increasing globalization 
in the seed sector. Many of the traditional landraces local 
varieties are now not available. Vegetable breeding must 
create new cultivars that not only yield more and are 
of better quality but also use energy, water, fertilizers, 
agrochemicals, and fertilizers more effectively. Germplasm 
development is the associated area that can be undertaken 
through creation of MAGIC population, use of wild relatives, 
genetic transformation and gene pyramiding, etc. 

Nutrition and shelf-life
Breeding vegetables with improved nutritional quality is an 
important area of research, with a focus on increasing the 
content of vitamins, minerals, and antioxidants along with 
the extended shelf life. To ensure crop diversification and 
nutritional security, it is essential to focus on underutilized 
vegetables alongside improving the yield and quality of 
commonly grown vegetables. 

Resistance to biotic and biotic stresses
Because of globalization and environmental changes, the 
threat of invasive plant pests and pathogens is a significant 
and growing problem. The adoption of very input-intensive 
high-yielding varieties/hybrids has allowed farmers to 
produce more crops in less time, yet also reduced crop 
diversity. Many exotic and invasive insect pests have invaded 
in India recently viz., the South American pinworm (Tuta 
absoluta), and Solenopsis mealybug (Phenacoccus solenopsis) 
are few such insects (Halder and Rai, 2021). Similarly, there are 
various reports of new diseases affecting vegetable crops. 
Climate change had increased the frequency of extreme 
weather events, and breeding vegetables with improved 
tolerance to abiotic stresses such as drought, heat, and 
salinity is becoming increasingly important. 

Emerging new areas
In the recent past, demand has been raised for cultivars suitable 
for organic farming, natural framing, microgreens, vertical 
gardening, urban rooftop gardening, year-round supply, 
export, etc. Similarly, urban consumers and supermarkets 
are looking for unique and engaging eating experiences, 
and they are willing to pay more for produce that meets their 
expectations. Innovations like baby carrot, yellow and orange 
capsicum and chili, cherry and pear tomatoes, non-bitter 

cucumbers, mild-tasting brinjal, seedless watermelons, and 
lettuces with different colors, textures, and flavors for baby 
leaf and pre-cut salads have been developed to meet the 
evolving preferences of metros (Silva-Dias et al., 2014).

Conclusions
Conventional breeding has been instrumental in improving 
the production of vegetable crops. However, recent 
biotechnological advancements such as marker-assisted 
selection, gene editing, high-throughput plant phenotyping, 
and the application of artificial intelligence, machine learning, 
and synthetic biology offer numerous benefits and have the 
potential to reduce the breeding cycle period. In addition to 
these advancements, it is essential to prioritize the creation 
and conservation of germplasm, improve nutritional quality 
and shelf-life, develop cultivars that are resistant to biotic 
and abiotic stresses, and create varieties that are suitable for 
emerging areas. Adequate funding for vegetable research 
is crucial to achieve the goals. Overall, a combination of 
conventional and advanced breeding techniques along with 
a strong research focus on important areas will be necessary 
to meet the increasing demand for vegetables and to address 
challenges of climate change, food and nutritional security, 
and demands for specialty produce.
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सारांश
सब्जी फसलें वैश्विक खाद्य आपूर्ति श्रृंखला का महत्वपूर्ण हिस्सा हैं । जवै विविधता, स्वाद और पोषण मूल्यों  के कारण, यह विश्व स्तर मुख्य भोजन 
आहार ह ै। भारत दनुिया में सब्जियो ंका दूसरा सबसे बड़ा उत्पादक है, जो व्यावसायिक रूप से ताजा खपत के लिए 60 से अधिक विभिन्न प्रकार की 
सब्जिया ंउगाता ह।ै रंग, आकार, पोषण, स्वाद, उत्पाद की कटाई/तडु़ाई का समय, गुणवत्ता, ताजा उत्पाद की साल भर आपूर्ति एवं स्थान-विशिष्ट 
मागं के कारण सब्जियो ंकी अच्छी किस्म का विकास एक चुनौतीपूर्ण और जटिल प्रक्रिया ह।ै अधिक उन्नत किस्म के विकास के लिए विशेष ज्ञान, 
अत्याधनुिक तकनीक का उपयोग, आनुवंश िक संसाधनो ंकी उपलब्धता और इन संसाधनो ंका प्रभावी ढंग से उपयोग करने के लिए पर्याप्त पूंजी का 
होना अनिवार्य ह ै। वर्तमान पाठ में सब्जी की खेती की स्थिति, सामान्य प्रजनन विधियो,ं लक्षित लक्षण, जंगली आनुवंश िक संसाधन, आधनुिक प्रजनन 
दृष्टिकोण, उपज, गुणवत्ता, अनुकूलन क्षमता, सुरक्षित उत्पाद तथा सब्जी फसलो ंमें और अधिक सुधार लाने के लिए आर्टिफिशियल इंटेलिजेंस और 
मशीन लर्निंग के प्रयोग पर समीक्षा की गई है ।
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