Short Communication

Development and evaluation of integrated disease management module for leaf curl disease in chilli

Nagendran K, Shweta Kumari*, Vikas Dubey, Rajesh Kumar and KK Pandey

Development and evaluation of integrated disease management module for leaf curl disease in chilli

Chilli (Capsicum anuum L.), belonging to the family solanaceae, is being cultivated and consumed as vegetable and spice crop world-wide. Despite India ranks first in chilli production in the global scenario, chilli leaf curl disease (ChiLCD) associated with begomoviruses has emerged as a major constraint for its production. The symptoms associated with ChiLCD are curling of leaves, stunting of plants, reduced size of leaves, puckering and thickening of leaves, yellowing of veins and veinlets, etc. In severe cases, infected plants fail to produce fruits leading to 100% crop loss. Recent reports of ChiLCD in Indian subcontinent demonstrated the association of various begomoviruses such as chilli leaf curl virus (ChiLCV), chilli leaf curl India virus (ChiLCINV), chilli leaf curl Vellanad virus (ChiLCVV), tomato leaf curl Joydebpur virus, papaya leaf curl virus (PaLCuV), pepper leaf curl Bangladesh virus (PeplCBV) and tomato leaf curl New Delhi virus (ToLCNDV) (Kumar et al., 2015). In addition to their severe damage in inland conditions, ChiLCD are causing severe yield loss under island conditions too. Chilli leaf curl disease is the most destructive disease of chilli causing yield loss ranged from 25 to 80% (Pandurange Gouda 1979). Management of leaf curl disease in chilli crop becomes difficult due to wide host range of its associated begomoviruses, development of resistance by whiteflies to insecticides and lack of durable resistance in crop hosts. Control measures for its management may include an approach integrating different components of cultural, host plant resistance, chemical and biological measures. Several components such as plastic silver mulching, yellow sticky traps, border cropping, neem-based insecticides, etc. were identified from previous studies rendering effective control over the insect population in vegetable crops (Kandan et al. 2002; Mandal et al. 2012; Thiribhuvanamala et al. 2013; Priyanka et al. 2018). In the present study, we developed and evaluated the management module for effective management of chilli leaf curl disease caused by begomovirus in an integrated manner under field conditions.

Field experiment was conducted in research farm of ICAR-IIVR at Varanasi in Uttar Pradesh during two consecutive years 2017-18 and 2018-19 to develop integrated disease management module against leaf curl disease of chilli with the following four treatments and five replications in randomized block design on susceptible chilli cultivar Pusa Jwala. Details of treatments are as follows: T1 - Seed disinfection using Virkon S @5g/l for 20 mins; Seed treatment with imidacloprid; Covering of nursery seedlings with insect proof net; Soil application with bioconsortia formulation@5g/l; Seedling dip with imidacloprid @ 0.5ml/lit followed by Carbendazim + Mancozeb@2.5g/l for 20 mins each; Soil application of FYM enriched with bioconsortia formulation (Bacillus subtilis BS-2); Soil application of neem cake@5g/plant; Raising of bajra as border crop; Installation of yellow sticky traps @20nos./acre; Periodical spraying with micronutrient mixture and Salicylic acid (2mM); Soil drenching with humic acid@5ml/l; Need based rotational application of insecticides such as neem oil, Cyantraniliprole, Chlorfenapyr and chlorantraniliprole at 10 days interval. T2- T1 + Black silver mulching; T3- Farmers practice comprising of periodical spray of imidacloprid18.6%SL @0.5ml/l; and T4-Untreated control. Observations on plant height, yield and disease incidence were recorded in each replication and per cent disease reduction over control was also ascertained. The per cent disease incidence was calculated using the following formula:

\[
\text{Per cent disease reduction} = \frac{\text{Control incidence} - \text{Treatment incidence}}{\text{Control incidence}} \times 100
\]

Received: March 2020 / Accepted: July 2020

ICAR - Indian Institute of Vegetable Research, Varanasi 221305, Uttar Pradesh, India

*Corresponding author email: sweta.aau@gmail.com
The plant height yield and disease incidence data obtained from the field experiments were analyzed using OPSTAT. The data in percentage were subjected to arcsine transformation before analysis (Sheoran et al. 1998).

There is no adequate single method is effective for controlling viral diseases to reduce yield losses (Makkouk and Kumari 2009). In the present study, we amalgamated different components to develop a module for the management of chilli leaf curl disease in an integrated manner. Different components such as seed disinfection using Virkon S followed by seed treatment with imidacloprid; raising seedlings nursery under insect proof net; Soil application with bio-formulation (BS-2) @5g/l; Seedling dip with imidacloprid followed by carbendazim + mancozeb before transplanting; installation of yellow sticky traps; black silver polythene mulching; growing bajra along the borders; soil application of FYM enriched bio-formulation (BS-2); soil application of neem cake; spraying of micronutrient mixture and salicylic acid to improve the immunity of plant; soil drenching with humic acid; and need based rotational application of insecticides for vector control. Pandey et al. (2010) observed that imidacloprid was most effective against chilli leaf curl disease than other insecticides used in chilli. Biocontrol agents were reported to induce resistance against viral diseases apart from enhancing growth and yield of the crop. Kandan et al. (2002) and Thiribhuvanamala et al. (2013) demonstrated the efficacy of Pseudomonas fluorescens (Pf1) treatment on tomato plants showed enhanced resistance against GBNV with higher yield. Similarly, soil application and foliar spray of B. amyloliquefaciens (VB7) has reduced Tobacco streak virus (TSV) incidence on cotton by 52% compared to untreated plots under field conditions. Also, same strain has reduced number of local lesions on indicator host upon artificial inoculation (Vinodkumar et al. 2018). Use of reflective silver or metalized coatings on polyethylene decreased the number of thrips and tomato spotted wilt virus (TSWV) incidence in tomato (Stavisky et al. 2002; Hochmuth et al. 2008). Shirshikar (2008) reported reduction in the sunflower bud necrosis disease incidence, caused by TSV, upon protecting the main crop with border crop compared to the non-bordered one. Results of field experiment conducted at research farm of ICAR-IIVR for the management of chilli leaf curl disease revealed the highly variable nature of disease occurrence under natural field conditions. During 2017-18, there was no occurrence of chilli leaf curl disease. In 2018-19, maximum disease incidence of 27% has been recorded in untreated control plot and the least disease incidence was observed in IDM plot with mulching (10%) followed by IDM plot without mulching (13%). The incidence of leaf curl disease has reduced to 62.96% during 2018-19 in the IDM plot with mulching compared to untreated control. This is in corroboration with the findings of Priyanka et al., (2018) stating that combined effect of yellow sticky trap, polythene mulching, border cropping and neem oil spray has reduced the thrip vectors population leading to lesser incidence of bud necrosis disease in IPM plots compared to the farmer’s practice. Similarly, IPM strategy was significantly superior to farmer’s practice and untreated control in reducing the per cent disease incidence of tomato leaf curl New Delhi virus and its whitefly vector population in ash gourd in addition to increase number of fruits per plant and fruits yield (Tamilnayagan et al. 2019). Low incidence of disease ultimately leads to increased crop yield. In the present investigation, due to the reduced incidence of chilli leaf curl disease in the IDM module with mulching, yield of green chilli (34.92q/ha) increased by 78.61% compared to untreated control (15.91q/ha). In the same way, fruit yield of watermelon in the IPM plot was increased by 16.7 - 50% over that of the farmer’s practice developed for the management of bud necrosis disease (Priyanka et al. 2018). In addition to increase in yield, plant height is found to increase by 28.86% over the control plants. This might be due to plant growth promoting component such as micro nutrient, biocontrol agent and humic acid in the IDM module. The gross income (Rs. 419040/ha) and cost

Table 1: Effect of different modules on chilli leaf curl disease incidence and yield

<table>
<thead>
<tr>
<th>Module</th>
<th>Average disease incidence (%)</th>
<th>% reduction of disease over control</th>
<th>Average plant height (cm)</th>
<th>% increase of plant height over control</th>
<th>*Yield (q/acre)</th>
<th>% increase of yield over control</th>
<th>Gross income (Rs. 1,00,000)</th>
<th>CB ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDM without mulching</td>
<td>13</td>
<td>51.85</td>
<td>37.55</td>
<td>18.05</td>
<td>27.80</td>
<td>36.08</td>
<td>1,01,180</td>
<td>1:1.4</td>
</tr>
<tr>
<td>IDM with mulching</td>
<td>10</td>
<td>62.96</td>
<td>40.99</td>
<td>28.86</td>
<td>34.92</td>
<td>78.61</td>
<td>1,46,620</td>
<td>1:1.5</td>
</tr>
<tr>
<td>Farmers practice</td>
<td>18</td>
<td>33.33</td>
<td>33.59</td>
<td>5.60</td>
<td>19.59</td>
<td>13.60</td>
<td>17,630</td>
<td>1:1.1</td>
</tr>
<tr>
<td>Untreated control</td>
<td>27</td>
<td>-</td>
<td>31.81</td>
<td>-</td>
<td>15.91</td>
<td>-</td>
<td>(-10,330)</td>
<td>1:0.95</td>
</tr>
<tr>
<td>CD</td>
<td>5.4</td>
<td>5.95</td>
<td>8.12</td>
<td>6.194</td>
<td>8.363</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td>11.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mean yield of two seasons
benefit ratio (1:1.5) were recorded to be the highest in IDM module with mulching, followed by IDM module without mulching (Rs. 3,33600/ha and 1:1.4, respectively), whereas farmer’s practices obtained cost benefit ratio of 1:1.1 (Table 1).

Since leaf curl disease of chilli is serious constraint to its crop cultivation, this study provides a feasible solution for its management using locally available IDM components. In future, devised module should be evaluated for its efficacy across the Indian subcontinent for effective management of leaf curl disease in chilli by resource poor farmers.

Acknowledgement

Authors are thankful to Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India under Early Carrier Research Award (ECR/2016/000182) funding and Director (ICAR-IIVR) for providing facilities in conducting the research.

Reference

