
Abstract 
Onion is a crop of immense economic and dietary importance, widely cultivated and traded globally. Accurate identification of onion 
varieties is critical for pricing, quality assurance, traceability, and consumer preference, yet remains challenging due to high morphological 
similarity across cultivars. This study is the first reported attempt to classify Indian onion varieties using deep learning applied to bulb 
images. We evaluated the performance of four pre-trained convolutional neural networks, DenseNet121, InceptionV3, MobileNetV2 
and Xception, on a curated image dataset of 10 popular onion varieties. The result showed that DenseNet121 outperformed all models, 
achieving the highest precision (95.76%), recall (94.92%), F1 score (94.82%) and the lowest mean squared error of 0.94, demonstrating 
exceptional reliability and accuracy. Its dense connectivity architecture effectively captured subtle features, making it the most suitable 
for practical applications. InceptionV3 and MobileNetV2 also showed competitive results, with MobileNetV2 offering computational 
efficiency but facing challenges with certain misclassifications. Xception, despite its efficiency, had the lowest performance metrics, with 
precision and recall of 91.04% and 88.14%, respectively, and significant misclassification issues. These findings highlight the potential 
of DenseNet121 for automated onion variety identification and its superiority in addressing the intricate variability within agricultural 
datasets. These findings demonstrate the potential of deep learning for automating onion variety identification and supporting sorting, 
grading, and seed chain verification systems. Future work should extend to broader varietal coverage and seasonal datasets for real-
world applications.
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Introduction
Onion (Allium cepa L.) is a commercially valuable vegetable 
condiment of immense economic, medicinal and dietary 
importance, cultivated on almost every continent and 
used in every household food preparation throughout the 
year. It is a high-value crop, holding a dominant position in 
the international market among agricultural commodities 
(Setiya and Muthuselvan, 2018). Globally, it is cultivated 
second to tomatoes in an area of 5.84 million hectares with 
a total production of 111 million tons (FAOSTAT, 2023). The 
major onion-producing countries are India, China, Egypt, 
the USA, Bangladesh, Turkiye, Pakistan, Indonesia, Iran, and 
Algeria, accounting for 68% of the world’s production. China 
has been the largest producer of onions globally. However, 
according to the latest reports, India has recently overtaken 
China as the largest onion producer with the production 
of 30.21 million tons in an area of 1.74 million hectares. 
Recently, India has become one of the largest exporters (2 
million tons) of onions globally, surpassing the Netherlands, 
contributing significantly to both domestic and international 
market production (FAOSTAT, 2023; Ministry of Commerce 
and Industry, Government of India, 2023-24). This is possible 
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due to the continuous development of new high-yielding 
varieties along with cultivation practices. This has led to 
rapid globalization of the onion seed and bulb market, 
and competition for seed and bulb trade has been steadily 
rising, along with increasingly strict quality standards (Dias, 
2010; Dias and Ortiz, 2021). As a result, a wide range of new 
onion varieties are developed and introduced for cultivation 
each year, ensuring adaptability to market demands and 
diverse growing conditions. In the case of the onion, the 
bulb is a propagating material as well as a part of economic 
use. Therefore, it is the subject of attention throughout its 
supply chain. From the selection of varieties by producers 
to the choices made by consumers, precise identification of 
varieties is of vital importance. 

Traditionally, onion varieties are identified through 
manual experience and visual observation of morphological 
traits. Varieties can be differentiated based on morphological, 
biochemical and molecular traits (Korir et al., 2013). 
Morphological observations are based on a set of key traits 
under DUS testing (Distinctness, Uniformity, Stability) such 
as leaf colour, flower colour, plant height, fruit colour, shape, 
etc. (Barthélémy and Caraglio, 2007; Gupta and Mahajan, 
2018; Gupta et al., 2022; Sunpapao et al., 2022). Though 
easy and effective, morphological traits are subjected to 
environmental influence (Ahmed et al., 2013). Biochemical 
traits, such as protein content, pungency, and oil content, 
can be used as markers to identify varieties, but they are 
not feasible, as their composition can vary depending on 
growing conditions (Marone et al., 2022). Other methods, 
such as molecular detection, are highly effective for 
identifying onion varieties using markers like randomly 
amplified polymorphic DNA (RAPD), simple sequence 
repeats (SSR), amplified fragment length polymorphism 
(AFLP), and single nucleotide polymorphism (SNP) (Kim et al., 
2003; Mahajan et al., 2009; Tedeschi et al., 2014; Almontero 
and Espino, 2016). This method provides high reliability, 
accuracy, and consistency in distinguishing varieties, as 
they are based on genetic information, which remains 
stable regardless of environmental influences. However, 
these methods are also costly and complex. They require 
specialized laboratory equipment and expertise to perform, 
limiting their accessibility for routine or market-based variety 
identification (Hussain and Nisar, 2020). 

Recently, computer vision and machine learning have 
emerged as powerful tools for plant variety identification, 
revolutionizing traditional methods that rely on manual 
observation and expertise (Li et al., 2020; Ghazal et al., 2024). 
Deep learning is becoming popular for image recognition 
and classification tasks of fruits and vegetables (Srivalli 
and Geetha, 2019). Convolutional neural networks (CNNs) 
based on deep learning allow researchers to automatically 
extract, process, and analyze features from plant images, 
leading to more accurate and efficient classification of 

different plant varieties. They are fast, efficient, and robust, 
reducing the impact of environmental factors that typically 
affect traditional methods. CNN models can handle large 
datasets, work in real-time applications, and improve over 
time as more data is provided for food and agricultural tasks 
(Dhanya et al., 2022). Although initial setup costs can be high, 
they become cost-effective and adaptable for large-scale 
use in agriculture, breeding, and quality control, offering a 
cutting-edge solution for plant identification (Kamilaris and 
Prenafeta, 2018). Deep learning in agriculture serves two 
main purposes: first, it helps with identifying plant varieties 
and performing high-throughput phenotyping (Ubbens 
and Stavness, 2018). Second, it is used for monitoring 
plant health and identifying diseases (Brahimi et al., 2017; 
Ferentinos, 2018). Many studies have been carried out to 
identify varieties of pistachio (Heidary et al., 2021), wheat 
(Laabassi et al., 2021), chickpea (Taheri et al., 2021), mango 
(Abou et al., 2024) and apples (Taner et al., 2024) through 
the use of machine learning. 

In onion, a combination of fluorescence spectroscopic 
data and machine learning algorithms of LMT (Logistic 
Model Tree), Multilayer  Perceptron, Naive Bayes, Logit 
Boost, and LWL (Locally Weighted Learning) differentiated  
two varieties of red onion with 100% accuracy was found 
effective (Sabanci et al., 2022). More recent algorithms, 
such as transfer learning, have the potential to achieve 
better performance due to their ability to automatically 
learn complex patterns and relationships in data. While the 
VGG19 convolutional neural network (CNN) architecture has 
been applied to classify broad categories such as red onion, 
shallots, sweet onion, and yellow onion with 95% accuracy 
(Ronquillo et al., 2023), CNNs have been used not only to 
distinguish between red and white onion bulbs but also to 
differentiate good bulbs from damaged bulbs (Waghmare 
et al., 2023; Pawar and Deshpande, 2024). Studies have been 
extensively employed to identify various foliar and storage 
diseases in onions (Kim et al., 2020; Zaki et al., 2021; Vikhe et 
al., 2024; Kaur et al., 2024; Asnakew et al., 2025; Raj et alw., 
2025). However, despite these advances, very few or no 
studies (Puspadhani et al., 2021; Rybacki et al., 2024) have 
specifically focused on the identification of onion varieties 
at the cultivar level based on bulb images. 

Bulb-based varietal identification in onions is particularly 
challenging due to several factors, especially in India, where 
a wide range of dark to light red, yellow and white onion 
varieties are cultivated, showing significant variation in 
shape, size, and colour. Identifying onion varieties accurately 
in markets is crucial for pricing, quality assurance, and 
consumer preference. Traders and consumers may recognize 
certain varieties based on flavour preferences or shelf life. 
For instance, Nashik onions from India are known for their 
distinct pungency, but these preferences are often based 
on experience rather than clear identification systems. To 



Gupta et al: Identification of onion varieties using deep learning techniques	 399

address this, a collaborative program between ICAR-DOGR, 
Pune and TIH-IoT, IIT, Bombay was initiated to identify 
varieties dominant in the Indian market and seed chain using 
deep learning techniques. Therefore, 10 varieties of onion   
were selected to perform the classification task in this study.

Material and Methods

Varietal dataset
Ten onion varieties developed and available for cultivation 
in India were selected based on their market dominance and 
the availability of these varieties in the seed chain (Table 1). 
These varieties were sown in flat beds of size 3×2 m, with 
15×10 cm row-row and plant-plant spacing at the research 
farm (18º 32’ N, 73º 51’ E) of ICAR-Directorate of Onion and 
Garlic Research (DOGR), Pune, during rabi 2023-2024. The 
mature bulbs harvested in April-May 2024 were brought to 
the storage facilities after curing. Bulbs’ best-representing 
variety was selected for photographs. The data analysis 
related to deep learning was performed at the Agriculture 
Knowledge Management Unit (AKMU), ICAR-DOGR, Pune. 

Data acquisition and dataset construction
The bulbs were photographed using high quality camera 
with 18.5 megapixels (Canon EOS 700D), against a black 
background to reduce the interference of external 
environmental factors on model learning. Onion bulbs show 
natural variability in terms of size, shape, colour, thickness of 
neck, root disc position and presence of veins  appearance on 
scaly bulb. The images were taken with the precision of 5184 
* 3456 pixels per inch (ppi) to best represent the six DUS 
traits, which are bulb colour, bulb shape, neck thickness, 
position of root disc, bulb height (cm) and bulb diameter 
(cm) belonging to bulb characters that are visible in 
images. This variability provides valuable features that can 
enhance deep learning models for variety identification. 

Each characteristic provides unique visual information. 
By training on images that capture these features, the 
model can learn patterns associated with specific varieties, 
making it easier to recognize and classify them based 
on subtle visual cues. The model can learn fine-grained 
differences, such as slight variations in neck thickness or 
veins patterns, which might be characteristic of certain 
varieties. These fine distinctions can be difficult for humans 
to discern, but are detectable by deep learning algorithms. 
To capture these best DUS traits, photos were captured 
in 2 to 3 angles and with lighting variations to assess 
the model’s robustness to lighting variations. To ensure 
the accuracy and consistency of our data collection, we 
avoided images that are too blurry, pixelated, or have too 
much noise. Single bulb centered, entirely visible from all 
edges, placement was ensured (Fig. 1). Illustration in Fig. 2 
gives a visual overview of these 10 varieties. The image 
dataset consisted total of 495 images.

Pre-processing and labelling
In our study, we used the Roboflow platform for pre-
processing and labelling images. Roboflow is a popular 
platform that simplifies image annotation, data pre-
processing, and dataset management, particularly for 
computer vision projects. It’s well-suited for tasks like 
object detection, image segmentation and classification 
(Prakash, 2024). Roboflow provides an intuitive interface for 
labelling, allowing one to mark specific regions or classify 
entire images. For object detection, it offers bounding boxes 
drawing around regions of interest, such as distinct onion 
types. It offers a range of pre-processing tools to prepare 
images for machine-learning models. The initial dataset was 
subjected to data processing and augmentation in Roboflow. 
First augmentation involved resizing of images to 224 * 
224, stretching vertically and horizontally, horizontal and 
vertical flip, 90º upside down rotation and noise up to 0.1% 
of pixels on 495 labelled images (Fig. 2). Data augmentation 
expands the dataset by creating varied versions of training 
samples (e.g., through rotations, flips, and noise). This helps 
deep learning models generalize better, become more 

Table 1: Onion varietal dataset used in this study

S. No. Variety/Cultivar Source Number of 
images

1 Agrifound Dark Red NHRDF, Nashik 50

2 Arka Pitamber ICAR-IIHR, Bengaluru    50

3 Bhima Dark Red ICAR-DOGR, Pune 50

4 Bhima Kiran ICAR-DOGR, Pune 50

5 Bhima Light Red ICAR-DOGR, Pune 50

6 Bhima Shubhra ICAR-DOGR, Pune 50

7 Bhima Shweta ICAR-DOGR, Pune 45

8 Pillipatii Junagadh JAU, Junagadh 50

9 PKV White PDKV, Akola 50

10 Sukhasagar Local landrace 50

Total 495 Fig. 1: Workflow for construction of the onion varietal image dataset
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robust to different real-world conditions and reduce the 
risk of over-fitting. By enhancing data diversity without 
needing additional data, augmentation allows models to 
become more adaptable, accurate and resilient in practical 
applications (Pawara et al., 2017; Dong et al., 2024). Labelled 
images were then classified into respective variety folders 
collected in the build model folder. This directory data was 
split into 70% training, 20% validation and 10% testing for 
further training of the model.

Transfer learning
In machine learning, transfer learning involves using 
knowledge gained from multiple applications of deep neural 
networks (DNNs) to improve performance on a new, related 
task (Behera et al., 2021). Instead of training a model from 
scratch, transfer learning leverages a pre-trained model, 
often trained on a large, general dataset and fine-tunes it 
for a specific task with a smaller dataset. This approach is 
especially valuable when labelled data is limited or when 
training from scratch would require extensive time and 
computational resources. Transfer learning offers valuable 
benefits for automated plant identification, especially for 
improving low-performance plant classification models 
(Kaya et al., 2019). Thus, here we considered four popular 
transfer learning architectures, Xception, DenseNet121, 
MobileNetV2 and InceptionNetV3 pre-trained on the 
ImageNet dataset. In this preliminary study, we deliberately 
used standard CNN models to assess the feasibility of 
classifying a limited set of 10 onion varieties based on 
bulb images. Given the small dataset size and exploratory 
nature of the work, SOTA models were excluded to avoid 
overfitting and unnecessary computational complexity. 
All CNN models were developed using the TensorFlow 
2.17.1 platform with the Keras backend, programmed in 

Python 3 and implemented in Google Colab. The Xception 
model builds on ideas from Inception networks but uses 
depthwise separable convolutions to reduce parameters and 
computational costs. It has 36 convolutional layers organized 
into 14 modules to learn features more efficiently (Carreira 
et al., 1998). The DenseNet121 has 121 layers, which reduce 
redundant feature extraction by densely connecting layers 
(Swaminathan et al., 2021). MobileNet V2, with its 53 layers, 
utilizes depthwise separable convolutions to significantly 
reduce the number of operations and parameters (Howard, 
2017). Finally, InceptionNetV3 with 48 layers, which combines 
convolutions of different kernel sizes in parallel (within its 
Inception modules) to capture multi-scale features were 
used (Xia et al., 2017). Replacing the top layers, we retained 
only convolutional layers for feature extraction, which is a 
base model. Global average pooling (GAP) was applied to the 
output of the base model before adding custom top layers. 
GAP reduces each feature map to a single value by taking 
the average of all its values and with a smaller dataset, it 
reduces the risk of over-fitting (Dogan, 2023). The first fully 
connected layer of 512 units with a ReLU activation function 
is used in the top layers. The last fully connected prediction 
layer with 10 neurons, according to the number of classes 
of the task and Softmax activation function was used. The 
Softmax function outputs a probability distribution across 
the 10 classes, enabling multi-class classification.

Hyperparameters
The layers of the pre-trained models were frozen to focus 
on training the custom layers. For data loading, images are 
resized to 224x224 pixels and a batch size of 16 is used. The 
data is shuffled with a buffer size of 1000, cached in memory 
and prefetching is enabled with auto-tune for optimal input 
pipeline performance. The model is compiled with the Adam 

Fig. 2: Construction of image dataset, pre-processing and labelling (A. RGB Image dataset acquisition, B. Bounding boxing, C. Horizontal-vertical 
flip, D. 90º rotation, E. Labelling)
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optimizer and a learning rate of 0.001, using categorical 
cross-entropy as the loss function and accuracy as the 
evaluation metric. The model was trained for 30 epochs to 
ensure sufficient learning.

Performance metrics
For evaluation of our model’s performance and its potential 
to classify onion variety images accurately, we have used 
accuracy, precision, recall, F1-score, Matthew’s correlation 
coefficient (MCC), mean squared error (MSE) and confusion 
matrix. Accuracy indicates the model’s ability to make 
correct predictions. Precision measures the accuracy of 
positive predictions, which is a ratio between the number 
of correct predicted positive images and the total number of 
positive images. Recall measures the ability of the model to 
identify all real positive instances (important for minimizing 
false negatives). F1-score provides a balance measure of 
performance between precision and recall when there are 
imbalanced classes. MCC takes into account true and false 
positives and negatives, providing a balanced measure even 
when the classes are imbalanced. It’s particularly useful for 
binary and multi-class classification problems. MSE measures 
the average squared error between predicted and true 
values. The equations of all metrics used are provided below:

Accuracy =  	 (1)
Precision = 	 (2)
Recall = TP/(TP + FN)	 (3)
F1-score = )	 (4)
MCC 	 (5)

MSE = ) 2 	 (6)

Where, TP: True positives, TN: True negatives, FP: False 
positives, FN: False negatives

A confusion matrix is a table that evaluates the 
performance of a classification model by displaying the 
counts of actual versus predicted classifications. It breaks 
down predictions into four categories: True positives (TP), 
true negatives (TN), false positives (FP) and false negatives 
(FN). From these, one can derive important metrics such as 
accuracy, precision, recall, specificity and F1 score. The matrix 
provides detailed insights into model errors, particularly 
for imbalanced datasets, by showing how well the model 
distinguishes between classes and where it misclassifies. This 
allows us to identify specific areas for improvement, such as 
reducing false positives or false negatives.

Results and Discussion
The main objective of this study was to determine whether 
it is possible to identify onion varieties based on bulb colour, 
size, shape, diameter, height and veinal pattern on outer 
scales. The automatic identification of onion bulb varieties is 
a critical component of precision cultivation (Fan et al., 2021), 

significantly advancing agricultural practices and ensuring 
varietal purity. Traditional methods relying on visual 
identification in markets are often unreliable and subjective, 
leading to uncertainty. To address these challenges, this 
study trained four transfer learning models to identify 10 
selected onion varieties. Model performance was rigorously 
evaluated using metrics such as accuracy, precision, recall, F1 
score, MCC and MSE, providing a comprehensive assessment 
of their effectiveness. To investigate this, we used bulb-
based identification based on image classification using a 
deep learning approach.

Training stage
Table 2 compares four CNN architectures, Xception, 
DenseNet121, InceptionNetV3 and MobileNetV2 based 
on model size, training and validation performance. 
DenseNet121 emerges as the top performer, achieving 
the highest training accuracy of 97.41% and tying with 
MobileNetV2 for the best validation accuracy of 95.56%, 
with a smaller model size of 35 MB. MobileNetV2 offers a 
strong balance of performance and efficiency, maintaining 
competitive accuracy with a moderate size of 46 MB. 
Both models showed consistency in accuracy and loss. 
InceptionNetV3 is the smallest at 31 MB, though it lags 
slightly in accuracy compared to the top two. Xception, 
while accurate during training, ranks lowest due to its 
larger size (92 MB) and lower validation accuracy of 88.14%. 
A detailed variation in training accuracy and loss per 
iteration or epoch is given in Fig. 3. From the graph, it was 
observed that training accuracy and loss of InceptionV3 
and Xception showed inconsistent increases in accuracy, 
whereas a smooth graph was obtained for DenseNet121 
and MobileNetV2. 

The performance of different deep learning architectures 
during the testing phase is presented in Table 3. In contrast, 
the Xception architecture showed comparatively lower 
performance, yielding a test accuracy of 88.14% and a 
higher test loss of 0.49, at the lowest. MobileNetV2 attained 
a test accuracy of 93.22% with a test loss of 0.19 and stood 
at third. This was closely followed by InceptionNetV3, 
which achieved a test accuracy of 94.55% and a test loss of 
0.26, securing the second. Among the evaluated models, 
DenseNet121 exhibited superior performance, recording 
the highest test accuracy (94.92%) along with the lowest test 
loss (0.14) and stands at first. The accuracy rates obtained in 
this study are in agreement with those obtained by Taner et 
al. (2024), who applied seven deep learning models, VGG16, 
VGG19, InceptionV3, MobileNet, DenseNet201, Xception 
and ResNet152V2 for the classification of apple varieties 
and obtained accuracy ranging from 91-97%, with higher 
in DenseNet201 (64 filters of size 7×7). Similarly, Kozłowski 
et al. (2019) achieved an accuracy of over 93% using AlexNet 
and ResNet18, employing their custom-designed CNN for 
the classification of barley varieties.
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Precision, recall, F1 score, MCC and MSE were used to 
evaluate the performance of four models: DenseNet121, 
InceptionNetV3, MobileNetV2 and Xception. The 
performance metrics of the four models are presented in 
Table 4. DenseNet121 outperformed the others in most 
metrics, achieving the highest precision (95.76%), recall 
(94.92%), F1 score (94.82%) and MCC (94.47%), indicating its 
superior balance between accurate and reliable predictions. 
InceptionNetV3 closely followed, with a precision of 
95.14%, recall of 94.55%, F1 score of 94.55% and MCC of 
94.00%, showing strong performance but slightly below 
DenseNet121. MobileNetV2 ranked third, achieving a 
precision of 93.69%, recall of 93.22%, F1 score of 93.21% 
and MCC of 92.53%, reflecting good performance but with 
a noticeable gap compared to the top models. Xception, 
with the lowest precision (91.04%), recall (88.14%), F1 
score (87.63%) and MCC (87.21%), showed a higher rate of 
misclassifications and weaker consistency. In terms of error 
minimization, MobileNetV2 had the lowest mean squared 
error (MSE) of 0.11, making it highly effective for tasks 
sensitive to prediction errors. DenseNet121 followed with an 
MSE of 0.94, while InceptionNetV3 (1.48) and Xception (2.15) 
exhibited progressively higher error rates. DenseNet121 
emerged as the most balanced and reliable model, 
combining high accuracy, strong predictive reliability and 
minimal false predictions, while MobileNetV2 demonstrated 
exceptional error minimization capabilities. 

These metrics provide a comprehensive view of model 
reliability, balancing true positive predictions with the 
minimization of false positives and negatives, as well as 
prediction errors. DenseNet121 consistently demonstrated 
superior performance, achieving the highest precision 
(95.76%), recall (94.92%), F1 score (94.82%) and MCC (94.47%). 
These results underscore DenseNet121’s ability to balance 

sensitivity and specificity effectively, aligning with findings 
in previous studies that emphasize its robustness in feature 
extraction and predictive accuracy (Huang et al., 2017). Its 
slightly higher MSE (0.94) compared to MobileNetV2 may 
reflect its emphasis on overall classification performance 
rather than minimizing individual errors. InceptionNetV3 
performed closely to DenseNet121, achieving a precision 
of 95.14% and F1 score of 94.55%. While its recall (94.55%) 
and MCC (94.00%) were marginally lower than DenseNet121, 
it still exhibited strong consistency. This aligns with prior 
research highlighting InceptionNetV3’s efficacy in capturing 
hierarchical features through its inception modules, albeit 
with slightly reduced sensitivity compared to DenseNet 
architectures (Szegedy et al., 2016). MobileNetV2 emerged 
as an efficient alternative, achieving the lowest MSE (0.11), 
indicating minimal prediction errors. Its overall performance 
in terms of precision (93.69%), recall (93.22%), F1 score 
(93.21%) and MCC (92.53%) was commendable, though 
it lagged behind DenseNet121 and InceptionNetV3. The 
low MSE of MobileNetV2 is consistent with its lightweight 
architecture and focus on computational efficiency, as 
reported by (Sandler et al., 2018). Xception showed relatively 
lower performance across all metrics, with precision 
(91.04%), recall (88.14%), F1 score (87.63%), MCC (87.21%) and 
the highest MSE (2.15). These findings reflect its susceptibility 

Table 2: Results of training and validation at building stage

Architecture Model size (MB)
Training results Validation results

Ranking
Accuracy (%) Loss (%) Accuracy (%) Loss (%)

Xception 92 94.83 0.15 88.14 0.34 4

DenseNet121 35 97.41 0.09 95.56 0.17 1

InceptionNetV3 31 93.65 0.21 94.94 0.24 3

MobileNetV2 46 96.31 0.09 95.56 0.15 2

Testing stage

Table 3: Results of testing stage

Architecture Test accuracy (%) Test loss (%) Ranking

Xception 88.14 0.49 4

DenseNet121 94.92 0.14 1

InceptionNetV3 94.55 0.26 2

MobileNetV2 93.22 0.19 3

Table 4: Performance metrics of convolutional neural network

Model Precision (%) Recall (%) F1 score (%) MCC (%) MSE

Xception 91.04 88.14 87.63 87.21 2.15

DenseNet121 95.76 94.92 94.82 94.47 0.94

InceptionNetV3 95.14 94.55 94.55 94.00 1.48

MobileNetV2 93.69 93.22 93.21 92.53 0.11



Gupta et al: Identification of onion varieties using deep learning techniques	 403

to higher false predictions and lower reliability, possibly due 
to its more complex architecture, which may require larger 
datasets or extensive fine-tuning to achieve comparable 
results (Chollet, 2018). 

The confusion matrices for each of the four models, 
Xception, DenseNet121, InceptionV3 and MobileNetV2, 
reveal valuable insights into the classification performance, 
highlighting both strengths and weaknesses (Table 5). 
Confusion matrices for each model are presented in Fig 4. 
The matrix represents the relationship between the model’s 
predictions and the true labels of onion bulb images. 
The diagonal elements represent the number of correct 
predictions made by the model for each class. These are 
the instances where the predicted class matches the actual 
class, indicating the model’s successful classification for that 
particular category. On the other hand, the off-diagonal 
elements represent the misclassifications, where the 
model has predicted the wrong class. These are the values 
outside the diagonal that indicate how often the model has 
confused one class with another.

Xception shows a tendency for misclassifications, 
particularly for the Agrifound Dark Red, Bhima Light Red, 
and PKV White varieties. For instance, the Agrifound Dark 
Red is occasionally misclassified as Sukhsagar or Bhima Light 
Red, and PKV White is often confused with Bhima Shweta. 
This is reflected in the model’s lower precision (91.04%) and 
recall (88.14%), suggesting that Xception struggles with 
distinguishing between certain classes, leading to higher 
false positives and false negatives. In contrast, DenseNet121 
performs significantly better, with a precision of 95.76% 
and a recall of 94.92%, indicating fewer misclassifications 
across the board. The confusion matrix for DenseNet121 
shows minimal errors, particularly in Arka Pitamber and 
Bhima Kiran, where misclassifications occur only rarely. 
This indicates that DenseNet121 exhibits robust class 
differentiation, making it the most reliable model in terms 
of accuracy and consistency. InceptionV3 follows closely, 
with precision (95.14%) and recall (94.55%) values almost 
identical to those of DenseNet121. The confusion matrix 

for InceptionV3 reveals occasional confusion between the 
PKV White and Pillipatti Junagadh varieties, contributing to 
its slightly lower performance compared to DenseNet121. 
MobileNetV2, while showing the lowest MSE (0.11), has a 
precision of 93.69% and a recall of 93.22%, slightly lower than 
both DenseNet121 and InceptionV3. The model’s confusion 
matrix indicates that classes like BSH and BSS are frequently 
misclassified, contributing to a drop in performance. Despite 
this, MobileNetV2’s MSE suggests it is the most consistent in 
terms of the proximity of predictions to true values, making 
it an ideal choice when computational efficiency is a priority. 
The overall F1 scores for all models reflect the trade-off 
between precision and recall, with DenseNet121 achieving 
the highest score (94.82%), followed by InceptionV3 
(94.55%), MobileNetV2 (93.21%) and Xception (87.63%). 
These findings suggest the critical role of model fine-tuning 
and class balancing in improving precision and recall for 
certain classes. The analysis of these confusion matrices, in 
conjunction with performance metrics like MSE and MCC, 
highlights the importance of selecting the right model 
based on the specific needs of the application. Across the 
classes, the white-coloured Bhima Shubhra and Bhima 
Shweta varieties were particularly challenging, with all the 
models struggling to differentiate between them except 
DenseNet121. Similarly, Arka Pitamber and Bhima Kiran 
were misclassified and confused by all the models except 
DenseNet121. 

The results of this study demonstrate the robustness 
and reliability of DenseNet121 over MobileNetV2 and 
InceptionV3 models in onion variety identification. The 
reliability of DenseNet121 stems from its dense connectivity 
architecture, where each layer receives inputs from all 
preceding layers. This feature allows the model to reuse 
features effectively, promoting better gradient flow and 
mitigating the vanishing gradient problem (Peng et al., 
2024; Sangeetha et al., 2024). Additionally, it enables the 
model to capture intricate details and patterns in the 
dataset, which is crucial for distinguishing visually similar 
onion varieties. The performance of the Xception model 

Table 5: Comparison of model performance in classification of onion varieties

Model Correct Classifications Key Misclassifications Strengths Areas for Improvement

Xception High for most classes BK as AP, PKV as BSS Robust performance 
across classes

BK, PJ, PKV overlap, 
misclassifications in similar classes

DenseNet121 Strong performance 
across classes

BK as AP, PKV as BSS, SK as PKV Accurate feature 
extraction

Overlap in features between BK, 
PKV and others

InceptionV3 High performance, 
near-perfect accuracy

AP as BK, PKV as BSH, SK as 
ADR

High overall accuracy, 
few misclassifications

Confusion in AP, PKV and SK classes

MobileNetV2 Strong accuracy AP as BK, BSH as BSS, BSS as 
BSH

Fast and efficient model BSH and BSS overlap, AP as BK

(ADR: Agrifound Dark Red, AP: Arka Pitamber, BDR: Bhima Dark Red, BK: Bhima Kiran, BLR: Bhima Light Red, BSH: Bhima Shubhra, BSS: Bhima 
Shweta, PJ: Pillipatti Junagadh, PKV: PKV White, SK: Sukhsagar)
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Fig. 3: Training and validation accuracy and loss of four different CNN models 

for onion variety identification raises questions about its 
effectiveness and reliability compared with DenseNet121 
and MobileNetV2. The tendency to produce false positives 
poses significant challenges in practical applications like 
onion sorting and grading, as it can result in costly errors. 
Moreover, the Xception model’s low precision, recall and 

F1 score highlight its difficulty in effectively capturing the 
unique characteristics of various onion varieties.

DenseNet121 emerged as the most balanced model, 
excelling in accuracy, recall and reliability, making it well-
suited for applications requiring robust classification 
performance. MobileNetV2, with its minimal prediction 
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Xception DenseNet121

InceptionV3 MobileNetV2

Fig. 4: Confusion matrices showing model-wise classification performance of 10 onion varieties. (Diagonal values represent correct classifications, 
while off-diagonal elements highlight frequent misclassifications. ADR: Agrifound Dark Red, AP: Arka Pitamber, BDR: Bhima Dark Red, BK: Bhima 
Kiran, BLR: Bhima Light Red, BSH: Bhima Shubhra, BSS: Bhima Shweta, PJ: Pillipatti Junagadh, PKV: PKV White, SK: Sukhsagar)

errors, proved highly effective for scenarios prioritizing error 
minimization and computational efficiency. InceptionV3 
offered a strong balance between accuracy and reliability, 
while Xception showed the need for further optimization 
to enhance predictive consistency. Future work could 
explore hyperparameter tuning and dataset augmentation 
to further improve model performance. However, the 
dataset structure plays a crucial role in evaluating model 
efficiency. This study focused on images from rabi-
harvested produce. Expanding the dataset to include 
produce from kharif, late-kharif and rabi seasons would 
provide a more comprehensive understanding of seasonal 
and spatial variability. Additionally, the limited dataset 
size and storage duration used in this study may have 

restricted the models’ ability to capture diverse features. 
This classification framework has potential real-world 
applications in automated grading systems, mobile-based 
varietal verification for farmers, and digital traceability tools 
for seed certification agencies and traders.

This study demonstrates promising results using a 
Limitations dataset of 10 onion varieties; it does not yet 
account for environmental and seasonal variability. All 
images were collected from rabi-harvested produce 
at a single location, which may limit generalizability. 
Additionally, certain visually similar varieties, such as Bhima 
Shweta and Bhima Shubhra, were frequently misclassified 
by some models, indicating the need for higher intra-class 
resolution. Further, the image dataset lacks samples across 
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different storage durations or physiological ages, which 
could affect model robustness. These limitations point to the 
need for multi-season data and larger varietal representation 
in future studies.

Conclusion
Onion is a crop of immense importance and a dominant 
player in the international market among agricultural 
commodities. Accurate identification of onion varieties 
is crucial for pricing, quality assurance and consumer 
preference. Artificial intelligence (AI) and Machine Learning 
(ML) offers a superior alternative to the faulty and dubious 
methods of visual examination and individual perception 
in image classification tasks, achieving high accuracy and 
precision. This study establishes the feasibility of using 
deep learning models for the classification of Indian onion 
varieties based on bulb images. Among the models tested, 
DenseNet121 demonstrated the highest reliability and 
performance, owing to its dense connectivity and efficient 
feature extraction. The exclusion of state-of-the-art (SOTA) 
models was intentional, as their higher complexity and 
data requirements could lead to overfitting and would not 
be justified at this exploratory stage. The chosen models 
are efficient, well-established and appropriate for small 
datasets, allowing for a reliable baseline assessment. These 
findings support the potential of computer vision tools in 
enhancing the accuracy and speed of varietal identification, 
with direct applications in grading, sorting and quality 
assurance systems. Given the diversity of onion cultivars 
and environmental conditions across India, future research 
should include expanded datasets covering multiple 
growing seasons, storage durations and a wider range 
of varieties. Incorporating more advanced architectures, 
such as Vision Transformers or ensemble models, may 
further enhance classification accuracy. This work lays the 
foundation for building scalable, AI-driven platforms for 
onion variety verification in breeding, seed certification and 
supply chain management.
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साराशं

प्याज़ एक अत्यंत महत्वपूर्ण व्यावसायिक सब्ज़ी ह,ै जिसका व्यापक रूप से विश्वभर में उत्पादन और व्यापार किया जाता ह।ै प्याज़ की किस्म ों की सटीक पहचान मूल्य निर्धारण, 
गुणवत्ता सुनिश्चित करन,े अनुरेखण और उपभोक्ता पसंद के लिए अत्यंत आवश्यक ह,ै लेकिन विभिन्न किस्म ों में उच्च आकृति-आधारित समानता के कारण यह कार्य चुनौतीपूर्ण 
बना रहता ह।ै इस अध्ययन में पहली बार भारतीय प्याज़ की किस्म ों को कंद की छवियों  के आधार पर deep learning तकनीक से वर्गीकृत करन ेका प्रयास किया गया ह।ै 
हमन े10 लोकप्रिय प्याज़ किस्म ों के एक विशेष रूप से तैयार किए गए चित्र डेटासेट पर चार प्री-ट्रेंड कॉन्वोल्यूशनल न्यूरल नेटवर्क  (DenseNet121, InceptionV3, 
MobileNetV2 और Xception) के प्रदर्शन का मूल्यांकन किया। परिणामों  से पता चला कि DenseNet121 न ेसभी मॉडलों  को पीछे छोड़त ेहुए सर्वोच्च प्रिसीजन 
(95.76%), रिकॉल (94.92%), F1 स्कोर (94.82%) और न्यूनतम माध्य वर्ग त्रुटि 0.94 प्राप्त की, जो इसकी असाधारण विश्वसनीयता और सटीकता को दर्शाता ह।ै 
इसकी सघन कनेक्टिविटी संरचना न ेसूक्ष्म विशेषताओ ंको प्रभावी रूप से कैप्चर किया, जिससे यह व्यावहारिक अनुप्रयोगों  के लिए सबसे उपयकु्त साबित हुआ। InceptionV3 
और MobileNetV2 न ेभी प्रतिस्पर्धी परिणाम दिए, जिसमें MobileNetV2 न ेकम्प्यूटेशनल दक्षता दिखाई, लेकिन कुछ गलत वर्गीकरण में कठिनाई का सामना करना 
पड़ा। Xception, दक्ष होन ेके बावजदू, सबसे कम प्रदर्शन सूचकांक के साथ रहा, जिसमें प्रिसीजन 91.04% और रिकॉल 88.14% थी, तथा इसमें उल्लेखनीय गलत 
वर्गीकरण पाए गए। ये निष्कर्ष DenseNet121 की स्वचालित प्याज़ किस्म पहचान में क्षमता और कृषि डेटासेटस् में जटिल विविधताओ ंको संबोधित करन ेमें इसकी श्रेष्ठता 
को उजागर करत ेहैं। यह अध्ययन दर्शाता ह ैकि Deep learning तकनीक प्याज़ की किस्म ों की पहचान को स्वचालित करन,े छंटाई, ग्रेडिंग तथा बीज श्रृंखला सत्यापन 
प्रणाली को समर्थन देने में महत्वपूर्ण भूमिका निभा सकती ह।ै भविष्य में अनुसंधा न को और अधिक किस्म ों तथा मौसमी डेटासेट तक विस्तारित किया जाना चाहिए, ताकि 
वास्तविक परिस्थितियों  में इसका सफलतापूर्वक उपयोग किया जा सके।
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