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Image-based identification of onion varieties using deep learning techniques

Amar Jeet Gupta®, Supriya Kaldate, Sairam Volaguthala, Bhushan Bibwe, Kalyani Gorrepati and Vijay Mahajan

Abstract

Onion is a crop of immense economic and dietary importance, widely cultivated and traded globally. Accurate identification of onion
varieties is critical for pricing, quality assurance, traceability, and consumer preference, yet remains challenging due to high morphological
similarity across cultivars. This study is the first reported attempt to classify Indian onion varieties using deep learning applied to bulb
images. We evaluated the performance of four pre-trained convolutional neural networks, DenseNet121, InceptionV3, MobileNetV2
and Xception, on a curated image dataset of 10 popular onion varieties. The result showed that DenseNet121 outperformed all models,
achieving the highest precision (95.76%), recall (94.92%), F1 score (94.82%) and the lowest mean squared error of 0.94, demonstrating
exceptional reliability and accuracy. Its dense connectivity architecture effectively captured subtle features, making it the most suitable
for practical applications. InceptionV3 and MobileNetV2 also showed competitive results, with MobileNetV2 offering computational
efficiency but facing challenges with certain misclassifications. Xception, despite its efficiency, had the lowest performance metrics, with
precision and recall of 91.04% and 88.14%, respectively, and significant misclassification issues. These findings highlight the potential
of DenseNet121 for automated onion variety identification and its superiority in addressing the intricate variability within agricultural
datasets. These findings demonstrate the potential of deep learning for automating onion variety identification and supporting sorting,
grading, and seed chain verification systems. Future work should extend to broader varietal coverage and seasonal datasets for real-
world applications.
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Onion (Allium cepa L.) is a commercially valuable vegetable
condiment of immense economic, medicinal and dietary
importance, cultivated on almost every continent and
used in every household food preparation throughout the
year. It is a high-value crop, holding a dominant position in
the international market among agricultural commodities
(Setiya and Muthuselvan, 2018). Globally, it is cultivated
second to tomatoes in an area of 5.84 million hectares with
a total production of 111 million tons (FAOSTAT, 2023). The
major onion-producing countries are India, China, Egypt,
the USA, Bangladesh, Turkiye, Pakistan, Indonesia, Iran, and
Algeria, accounting for 68% of the world’s production. China
has been the largest producer of onions globally. However,
according to the latest reports, India has recently overtaken
China as the largest onion producer with the production
of 30.21 million tons in an area of 1.74 million hectares.
Recently, India has become one of the largest exporters (2
million tons) of onions globally, surpassing the Netherlands,
contributing significantly to both domestic and international
market production (FAOSTAT, 2023; Ministry of Commerce
and Industry, Government of India, 2023-24). This is possible
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due to the continuous development of new high-yielding
varieties along with cultivation practices. This has led to
rapid globalization of the onion seed and bulb market,
and competition for seed and bulb trade has been steadily
rising, along with increasingly strict quality standards (Dias,
2010; Dias and Ortiz, 2021). As a result, a wide range of new
onion varieties are developed and introduced for cultivation
each year, ensuring adaptability to market demands and
diverse growing conditions. In the case of the onion, the
bulb is a propagating material as well as a part of economic
use. Therefore, it is the subject of attention throughout its
supply chain. From the selection of varieties by producers
to the choices made by consumers, precise identification of
varieties is of vital importance.

Traditionally, onion varieties are identified through
manual experience and visual observation of morphological
traits. Varieties can be differentiated based on morphological,
biochemical and molecular traits (Korir et al., 2013).
Morphological observations are based on a set of key traits
under DUS testing (Distinctness, Uniformity, Stability) such
as leaf colour, flower colour, plant height, fruit colour, shape,
etc. (Barthélémy and Caraglio, 2007; Gupta and Mahajan,
2018; Gupta et al., 2022; Sunpapao et al., 2022). Though
easy and effective, morphological traits are subjected to
environmental influence (Ahmed et al., 2013). Biochemical
traits, such as protein content, pungency, and oil content,
can be used as markers to identify varieties, but they are
not feasible, as their composition can vary depending on
growing conditions (Marone et al., 2022). Other methods,
such as molecular detection, are highly effective for
identifying onion varieties using markers like randomly
amplified polymorphic DNA (RAPD), simple sequence
repeats (SSR), amplified fragment length polymorphism
(AFLP), and single nucleotide polymorphism (SNP) (Kim et al.,
2003; Mahajan et al., 2009; Tedeschi et al., 2014; Almontero
and Espino, 2016). This method provides high reliability,
accuracy, and consistency in distinguishing varieties, as
they are based on genetic information, which remains
stable regardless of environmental influences. However,
these methods are also costly and complex. They require
specialized laboratory equipment and expertise to perform,
limiting their accessibility for routine or market-based variety
identification (Hussain and Nisar, 2020).

Recently, computer vision and machine learning have
emerged as powerful tools for plant variety identification,
revolutionizing traditional methods that rely on manual
observation and expertise (Li et al., 2020; Ghazal et al., 2024).
Deep learning is becoming popular for image recognition
and classification tasks of fruits and vegetables (Srivalli
and Geetha, 2019). Convolutional neural networks (CNNs)
based on deep learning allow researchers to automatically
extract, process, and analyze features from plant images,
leading to more accurate and efficient classification of

different plant varieties. They are fast, efficient, and robust,
reducing the impact of environmental factors that typically
affect traditional methods. CNN models can handle large
datasets, work in real-time applications, and improve over
time as more data is provided for food and agricultural tasks
(Dhanya et al., 2022). Although initial setup costs can be high,
they become cost-effective and adaptable for large-scale
use in agriculture, breeding, and quality control, offering a
cutting-edge solution for plant identification (Kamilaris and
Prenafeta, 2018). Deep learning in agriculture serves two
main purposes: first, it helps with identifying plant varieties
and performing high-throughput phenotyping (Ubbens
and Stavness, 2018). Second, it is used for monitoring
plant health and identifying diseases (Brahimi et al., 2017;
Ferentinos, 2018). Many studies have been carried out to
identify varieties of pistachio (Heidary et al., 2021), wheat
(Laabassi et al., 2021), chickpea (Taheri et al., 2021), mango
(Abou et al., 2024) and apples (Taner et al., 2024) through
the use of machine learning.

In onion, a combination of fluorescence spectroscopic
data and machine learning algorithms of LMT (Logistic
Model Tree), Multilayer Perceptron, Naive Bayes, Logit
Boost, and LWL (Locally Weighted Learning) differentiated
two varieties of red onion with 100% accuracy was found
effective (Sabanci et al.,, 2022). More recent algorithms,
such as transfer learning, have the potential to achieve
better performance due to their ability to automatically
learn complex patterns and relationships in data. While the
VGG19 convolutional neural network (CNN) architecture has
been applied to classify broad categories such as red onion,
shallots, sweet onion, and yellow onion with 95% accuracy
(Ronquillo et al., 2023), CNNs have been used not only to
distinguish between red and white onion bulbs but also to
differentiate good bulbs from damaged bulbs (Waghmare
etal., 2023; Pawar and Deshpande, 2024). Studies have been
extensively employed to identify various foliar and storage
diseases in onions (Kim et al., 2020; Zaki et al., 2021; Vikhe et
al., 2024; Kaur et al., 2024; Asnakew et al., 2025; Raj et alw.,
2025). However, despite these advances, very few or no
studies (Puspadhani et al., 2021; Rybacki et al., 2024) have
specifically focused on the identification of onion varieties
at the cultivar level based on bulb images.

Bulb-based varietal identification in onions is particularly
challenging due to several factors, especially in India, where
a wide range of dark to light red, yellow and white onion
varieties are cultivated, showing significant variation in
shape, size, and colour. Identifying onion varieties accurately
in markets is crucial for pricing, quality assurance, and
consumer preference. Traders and consumers may recognize
certain varieties based on flavour preferences or shelf life.
For instance, Nashik onions from India are known for their
distinct pungency, but these preferences are often based
on experience rather than clear identification systems. To
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address this, a collaborative program between ICAR-DOGR,
Pune and TIH-IoT, IIT, Bombay was initiated to identify
varieties dominant in the Indian market and seed chain using
deep learning techniques. Therefore, 10 varieties of onion
were selected to perform the classification task in this study.

Material and Methods

Varietal dataset

Ten onion varieties developed and available for cultivation
in India were selected based on their market dominance and
the availability of these varieties in the seed chain (Table 1).
These varieties were sown in flat beds of size 3x2 m, with
15%10 cm row-row and plant-plant spacing at the research
farm (18° 32’ N, 73° 51’ E) of ICAR-Directorate of Onion and
Garlic Research (DOGR), Pune, during rabi 2023-2024. The
mature bulbs harvested in April-May 2024 were brought to
the storage facilities after curing. Bulbs’ best-representing
variety was selected for photographs. The data analysis
related to deep learning was performed at the Agriculture
Knowledge Management Unit (AKMU), ICAR-DOGR, Pune.

Data acquisition and dataset construction

The bulbs were photographed using high quality camera
with 18.5 megapixels (Canon EOS 700D), against a black
background to reduce the interference of external
environmental factors on model learning. Onion bulbs show
natural variability in terms of size, shape, colour, thickness of
neck, root disc position and presence of veins appearance on
scaly bulb. The images were taken with the precision of 5184
* 3456 pixels per inch (ppi) to best represent the six DUS
traits, which are bulb colour, bulb shape, neck thickness,
position of root disc, bulb height (cm) and bulb diameter
(cm) belonging to bulb characters that are visible in
images. This variability provides valuable features that can
enhance deep learning models for variety identification.

Table 1: Onion varietal dataset used in this study

S.No.  \Variety/Cultivar Source /{\rlrslg;gir of
1 Agrifound Dark Red  NHRDF, Nashik 50
2 Arka Pitamber ICAR-IIHR, Bengaluru 50
3 Bhima Dark Red ICAR-DOGR, Pune 50
4 Bhima Kiran ICAR-DOGR, Pune 50
5 Bhima Light Red ICAR-DOGR, Pune 50
6 Bhima Shubhra ICAR-DOGR, Pune 50
7 Bhima Shweta ICAR-DOGR, Pune 45
8 Pillipatii Junagadh JAU, Junagadh 50
9 PKV White PDKYV, Akola 50
10 Sukhasagar Local landrace 50
Total 495

Each characteristic provides unique visual information.
By training on images that capture these features, the
model can learn patterns associated with specific varieties,
making it easier to recognize and classify them based
on subtle visual cues. The model can learn fine-grained
differences, such as slight variations in neck thickness or
veins patterns, which might be characteristic of certain
varieties. These fine distinctions can be difficult for humans
to discern, but are detectable by deep learning algorithms.
To capture these best DUS traits, photos were captured
in 2 to 3 angles and with lighting variations to assess
the model’s robustness to lighting variations. To ensure
the accuracy and consistency of our data collection, we
avoided images that are too blurry, pixelated, or have too
much noise. Single bulb centered, entirely visible from all
edges, placement was ensured (Fig. 1). lllustration in Fig. 2
gives a visual overview of these 10 varieties. The image
dataset consisted total of 495 images.

Pre-processing and labelling

In our study, we used the Roboflow platform for pre-
processing and labelling images. Roboflow is a popular
platform that simplifies image annotation, data pre-
processing, and dataset management, particularly for
computer vision projects. It's well-suited for tasks like
object detection, image segmentation and classification
(Prakash, 2024). Roboflow provides an intuitive interface for
labelling, allowing one to mark specific regions or classify
entire images. For object detection, it offers bounding boxes
drawing around regions of interest, such as distinct onion
types. It offers a range of pre-processing tools to prepare
images for machine-learning models. The initial dataset was
subjected to data processing and augmentation in Roboflow.
First augmentation involved resizing of images to 224 *
224, stretching vertically and horizontally, horizontal and
vertical flip, 90° upside down rotation and noise up to 0.1%
of pixels on 495 labelled images (Fig. 2). Data augmentation
expands the dataset by creating varied versions of training
samples (e.g., through rotations, flips, and noise). This helps
deep learning models generalize better, become more

Image
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Market Survey

6 DUS traits of onion bulb

Fig. 1: Workflow for construction of the onion varietal image dataset
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Fig. 2: Construction of image dataset, pre-processing and labelling (A. RGB Image dataset acquisition, B. Bounding boxing, C. Horizontal-vertical

flip, D. 90° rotation, E. Labelling)

robust to different real-world conditions and reduce the
risk of over-fitting. By enhancing data diversity without
needing additional data, augmentation allows models to
become more adaptable, accurate and resilient in practical
applications (Pawara et al., 2017; Dong et al., 2024). Labelled
images were then classified into respective variety folders
collected in the build model folder. This directory data was
split into 70% training, 20% validation and 10% testing for
further training of the model.

Transfer learning

In machine learning, transfer learning involves using
knowledge gained from multiple applications of deep neural
networks (DNNs) to improve performance on a new, related
task (Behera et al., 2021). Instead of training a model from
scratch, transfer learning leverages a pre-trained model,
often trained on a large, general dataset and fine-tunes it
for a specific task with a smaller dataset. This approach is
especially valuable when labelled data is limited or when
training from scratch would require extensive time and
computational resources. Transfer learning offers valuable
benefits for automated plant identification, especially for
improving low-performance plant classification models
(Kaya et al., 2019). Thus, here we considered four popular
transfer learning architectures, Xception, DenseNet121,
MobileNetV2 and InceptionNetV3 pre-trained on the
ImageNet dataset. In this preliminary study, we deliberately
used standard CNN models to assess the feasibility of
classifying a limited set of 10 onion varieties based on
bulb images. Given the small dataset size and exploratory
nature of the work, SOTA models were excluded to avoid
overfitting and unnecessary computational complexity.
All CNN models were developed using the TensorFlow
2.17.1 platform with the Keras backend, programmed in

Python 3 and implemented in Google Colab. The Xception
model builds on ideas from Inception networks but uses
depthwise separable convolutions to reduce parameters and
computational costs. It has 36 convolutional layers organized
into 14 modules to learn features more efficiently (Carreira
etal., 1998). The DenseNet121 has 121 layers, which reduce
redundant feature extraction by densely connecting layers
(Swaminathan et al., 2021). MobileNet V2, with its 53 layers,
utilizes depthwise separable convolutions to significantly
reduce the number of operations and parameters (Howard,
2017).Finally, InceptionNetV3 with 48 layers, which combines
convolutions of different kernel sizes in parallel (within its
Inception modules) to capture multi-scale features were
used (Xia et al., 2017). Replacing the top layers, we retained
only convolutional layers for feature extraction, which is a
base model. Global average pooling (GAP) was applied to the
output of the base model before adding custom top layers.
GAP reduces each feature map to a single value by taking
the average of all its values and with a smaller dataset, it
reduces the risk of over-fitting (Dogan, 2023). The first fully
connected layer of 512 units with a ReLU activation function
is used in the top layers. The last fully connected prediction
layer with 10 neurons, according to the number of classes
of the task and Softmax activation function was used. The
Softmax function outputs a probability distribution across
the 10 classes, enabling multi-class classification.

Hyperparameters

The layers of the pre-trained models were frozen to focus
on training the custom layers. For data loading, images are
resized to 224x224 pixels and a batch size of 16 is used. The
data is shuffled with a buffer size of 1000, cached in memory
and prefetching is enabled with auto-tune for optimal input
pipeline performance. The modelis compiled with the Adam
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optimizer and a learning rate of 0.001, using categorical
cross-entropy as the loss function and accuracy as the
evaluation metric. The model was trained for 30 epochs to
ensure sufficient learning.

Performance metrics

For evaluation of our model’s performance and its potential
to classify onion variety images accurately, we have used
accuracy, precision, recall, F1-score, Matthew’s correlation
coefficient (MCC), mean squared error (MSE) and confusion
matrix. Accuracy indicates the model’s ability to make
correct predictions. Precision measures the accuracy of
positive predictions, which is a ratio between the number
of correct predicted positive images and the total number of
positive images. Recall measures the ability of the model to
identify all real positive instances (important for minimizing
false negatives). F1-score provides a balance measure of
performance between precision and recall when there are
imbalanced classes. MCC takes into account true and false
positives and negatives, providing a balanced measure even
when the classes are imbalanced. It's particularly useful for
binary and multi-class classification problems. MSE measures
the average squared error between predicted and true
values. The equations of all metrics used are provided below:

Accuracy = (TP + TN)/(TP + TN + FP + FN

—

1

)

Precision = TP/ (TP + FP) )

Recall =TP/(TP + FN) (3)

F1-score =2 « (Precision * Recall)/(Precision + Recall) 4)
TE+TN-FP+FN

mcc = JTTP+FEITTE+FNIITH+FE) (TN+EN, (5)

MSE =~ Efo (¥i — F)° )

Where, TP: True positives, TN: True negatives, FP: False
positives, FN: False negatives

A confusion matrix is a table that evaluates the
performance of a classification model by displaying the
counts of actual versus predicted classifications. It breaks
down predictions into four categories: True positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN). From these, one can derive important metrics such as
accuracy, precision, recall, specificity and F1 score. The matrix
provides detailed insights into model errors, particularly
for imbalanced datasets, by showing how well the model
distinguishes between classes and where it misclassifies. This
allows us to identify specific areas forimprovement, such as
reducing false positives or false negatives.

Results and Discussion

The main objective of this study was to determine whether
itis possible to identify onion varieties based on bulb colour,
size, shape, diameter, height and veinal pattern on outer
scales. The automatic identification of onion bulb varieties is
a critical component of precision cultivation (Fan et al., 2021),

significantly advancing agricultural practices and ensuring
varietal purity. Traditional methods relying on visual
identification in markets are often unreliable and subjective,
leading to uncertainty. To address these challenges, this
study trained four transfer learning models to identify 10
selected onion varieties. Model performance was rigorously
evaluated using metrics such as accuracy, precision, recall, F1
score, MCC and MSE, providing a comprehensive assessment
of their effectiveness. To investigate this, we used bulb-
based identification based on image classification using a
deep learning approach.

Training stage

Table 2 compares four CNN architectures, Xception,
DenseNet121, InceptionNetV3 and MobileNetV2 based
on model size, training and validation performance.
DenseNet121 emerges as the top performer, achieving
the highest training accuracy of 97.41% and tying with
MobileNetV2 for the best validation accuracy of 95.56%,
with a smaller model size of 35 MB. MobileNetV2 offers a
strong balance of performance and efficiency, maintaining
competitive accuracy with a moderate size of 46 MB.
Both models showed consistency in accuracy and loss.
InceptionNetV3 is the smallest at 31 MB, though it lags
slightly in accuracy compared to the top two. Xception,
while accurate during training, ranks lowest due to its
larger size (92 MB) and lower validation accuracy of 88.14%.
A detailed variation in training accuracy and loss per
iteration or epoch is given in Fig. 3. From the graph, it was
observed that training accuracy and loss of InceptionV3
and Xception showed inconsistent increases in accuracy,
whereas a smooth graph was obtained for DenseNet121
and MobileNetV2.

The performance of different deep learning architectures
during the testing phase is presented in Table 3. In contrast,
the Xception architecture showed comparatively lower
performance, yielding a test accuracy of 88.14% and a
higher test loss of 0.49, at the lowest. MobileNetV2 attained
a test accuracy of 93.22% with a test loss of 0.19 and stood
at third. This was closely followed by InceptionNetV3,
which achieved a test accuracy of 94.55% and a test loss of
0.26, securing the second. Among the evaluated models,
DenseNet121 exhibited superior performance, recording
the highest test accuracy (94.92%) along with the lowest test
loss (0.14) and stands at first. The accuracy rates obtained in
this study are in agreement with those obtained by Taner et
al.(2024), who applied seven deep learning models, VGG16,
VGG19, InceptionV3, MobileNet, DenseNet201, Xception
and ResNet152V2 for the classification of apple varieties
and obtained accuracy ranging from 91-97%, with higher
in DenseNet201 (64 filters of size 7x7). Similarly, Koztowski
etal. (2019) achieved an accuracy of over 93% using AlexNet
and ResNet18, employing their custom-designed CNN for
the classification of barley varieties.
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Table 2: Results of training and validation at building stage

Training results Validation results
Architecture Model size (MB) Ranking
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Xception 92 94.83 0.15 88.14 0.34 4
DenseNet121 35 97.41 0.09 95.56 0.17 1
InceptionNetV3 31 93.65 0.21 94.94 0.24 3
MobileNetV2 46 96.31 0.09 95.56 0.15 2
Testing stage
Precision, recall, F1 score, MCC and MSE were used to Table 3: Results of testing stage
evaluate the performance of four models: DenseNet121, Architecture Testaccuracy (%)  Testloss(%)  Ranking
InceptlonNetV3,. MobileNetV2 and Xception. The Xception 8814 0.49 4
performance metrics of the four models are presented in
Table 4. DenseNet121 outperformed the others in most DenseNet121 9492 0.14 !
metrics, achieving the highest precision (95.76%), recall InceptionNetV3 94.55 0.26 2
(94.92%), F1 score (94.82%) and MCC (94.47%), indicating its MobileNetV?2 93.22 0.19 3

superior balance between accurate and reliable predictions.
InceptionNetV3 closely followed, with a precision of
95.14%, recall of 94.55%, F1 score of 94.55% and MCC of
94.00%, showing strong performance but slightly below
DenseNet121. MobileNetV2 ranked third, achieving a
precision of 93.69%, recall of 93.22%, F1 score of 93.21%
and MCC of 92.53%, reflecting good performance but with
a noticeable gap compared to the top models. Xception,
with the lowest precision (91.04%), recall (88.14%), F1
score (87.63%) and MCC (87.21%), showed a higher rate of
misclassifications and weaker consistency. In terms of error
minimization, MobileNetV2 had the lowest mean squared
error (MSE) of 0.11, making it highly effective for tasks
sensitive to prediction errors. DenseNet121 followed with an
MSE of 0.94, while InceptionNetV3 (1.48) and Xception (2.15)
exhibited progressively higher error rates. DenseNet121
emerged as the most balanced and reliable model,
combining high accuracy, strong predictive reliability and
minimal false predictions, while MobileNetV2 demonstrated
exceptional error minimization capabilities.

These metrics provide a comprehensive view of model
reliability, balancing true positive predictions with the
minimization of false positives and negatives, as well as
prediction errors. DenseNet121 consistently demonstrated
superior performance, achieving the highest precision
(95.76%), recall (94.92%), F1 score (94.82%) and MCC (94.47%).
These results underscore DenseNet121's ability to balance

Table 4: Performance metrics of convolutional neural network

sensitivity and specificity effectively, aligning with findings
in previous studies that emphasize its robustness in feature
extraction and predictive accuracy (Huang et al., 2017). Its
slightly higher MSE (0.94) compared to MobileNetV2 may
reflect its emphasis on overall classification performance
rather than minimizing individual errors. InceptionNetV3
performed closely to DenseNet121, achieving a precision
of 95.14% and F1 score of 94.55%. While its recall (94.55%)
and MCC (94.00%) were marginally lower than DenseNet121,
it still exhibited strong consistency. This aligns with prior
research highlighting InceptionNetV3's efficacy in capturing
hierarchical features through its inception modules, albeit
with slightly reduced sensitivity compared to DenseNet
architectures (Szegedy et al., 2016). MobileNetV2 emerged
as an efficient alternative, achieving the lowest MSE (0.11),
indicating minimal prediction errors. Its overall performance
in terms of precision (93.69%), recall (93.22%), F1 score
(93.21%) and MCC (92.53%) was commendable, though
it lagged behind DenseNet121 and InceptionNetV3. The
low MSE of MobileNetV2 is consistent with its lightweight
architecture and focus on computational efficiency, as
reported by (Sandler et al., 2018). Xception showed relatively
lower performance across all metrics, with precision
(91.04%), recall (88.14%), F1 score (87.63%), MCC (87.21%) and
the highest MSE (2.15). These findings reflect its susceptibility

Model Precision (%) Recall (%) F1 score (%) MCC (%) MSE
Xception 91.04 88.14 87.63 87.21 2.15
DenseNet121 95.76 94.92 94.82 94.47 0.94
InceptionNetV3 95.14 94.55 94.55 94.00 1.48
MobileNetV2 93.69 93.22 93.21 92.53 0.11
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Table 5: Comparison of model performance in classification of onion varieties

Model Correct Classifications Key Misclassifications Strengths Areas for Improvement
Xception High for most classes BK as AP, PKV as BSS Robust performance BK, PJ, PKV overlap,
across classes misclassifications in similar classes
DenseNet121  Strong performance BK as AP, PKV as BSS, SKas PKV  Accurate feature Overlap in features between BK,
across classes extraction PKV and others
InceptionV3 High performance, AP as BK, PKV as BSH, SK as High overall accuracy, Confusion in AP, PKV and SK classes
near-perfectaccuracy ~ ADR few misclassifications
MobileNetV2  Strong accuracy AP as BK, BSH as BSS, BSS as Fast and efficient model  BSH and BSS overlap, AP as BK

BSH

(ADR: Agrifound Dark Red, AP: Arka Pitamber, BDR: Bhima Dark Red, BK: Bhima Kiran, BLR: Bhima Light Red, BSH: Bhima Shubhra, BSS: Bhima

Shweta, PJ: Pillipatti Junagadh, PKV: PKV White, SK: Sukhsagar)

to higher false predictions and lower reliability, possibly due
to its more complex architecture, which may require larger
datasets or extensive fine-tuning to achieve comparable
results (Chollet, 2018).

The confusion matrices for each of the four models,
Xception, DenseNet121, InceptionV3 and MobileNetV2,
reveal valuable insights into the classification performance,
highlighting both strengths and weaknesses (Table 5).
Confusion matrices for each model are presented in Fig 4.
The matrix represents the relationship between the model’s
predictions and the true labels of onion bulb images.
The diagonal elements represent the number of correct
predictions made by the model for each class. These are
the instances where the predicted class matches the actual
class, indicating the model’s successful classification for that
particular category. On the other hand, the off-diagonal
elements represent the misclassifications, where the
model has predicted the wrong class. These are the values
outside the diagonal that indicate how often the model has
confused one class with another.

Xception shows a tendency for misclassifications,
particularly for the Agrifound Dark Red, Bhima Light Red,
and PKV White varieties. For instance, the Agrifound Dark
Red is occasionally misclassified as Sukhsagar or Bhima Light
Red, and PKV White is often confused with Bhima Shweta.
This is reflected in the model’s lower precision (91.04%) and
recall (88.14%), suggesting that Xception struggles with
distinguishing between certain classes, leading to higher
false positives and false negatives. In contrast, DenseNet121
performs significantly better, with a precision of 95.76%
and a recall of 94.92%, indicating fewer misclassifications
across the board. The confusion matrix for DenseNet121
shows minimal errors, particularly in Arka Pitamber and
Bhima Kiran, where misclassifications occur only rarely.
This indicates that DenseNet121 exhibits robust class
differentiation, making it the most reliable model in terms
of accuracy and consistency. InceptionV3 follows closely,
with precision (95.14%) and recall (94.55%) values almost
identical to those of DenseNet121. The confusion matrix

for InceptionV3 reveals occasional confusion between the
PKV White and Pillipatti Junagadh varieties, contributing to
its slightly lower performance compared to DenseNet121.
MobileNetV2, while showing the lowest MSE (0.11), has a
precision of 93.69% and a recall of 93.22%, slightly lower than
both DenseNet121 and InceptionV3. The model’s confusion
matrix indicates that classes like BSH and BSS are frequently
misclassified, contributing to a drop in performance. Despite
this, MobileNetV2's MSE suggests it is the most consistent in
terms of the proximity of predictions to true values, making
it an ideal choice when computational efficiency is a priority.
The overall F1 scores for all models reflect the trade-off
between precision and recall, with DenseNet121 achieving
the highest score (94.82%), followed by InceptionV3
(94.55%), MobileNetV2 (93.21%) and Xception (87.63%).
These findings suggest the critical role of model fine-tuning
and class balancing in improving precision and recall for
certain classes. The analysis of these confusion matrices, in
conjunction with performance metrics like MSE and MCC,
highlights the importance of selecting the right model
based on the specific needs of the application. Across the
classes, the white-coloured Bhima Shubhra and Bhima
Shweta varieties were particularly challenging, with all the
models struggling to differentiate between them except
DenseNet121. Similarly, Arka Pitamber and Bhima Kiran
were misclassified and confused by all the models except
DenseNet121.

The results of this study demonstrate the robustness
and reliability of DenseNet121 over MobileNetV2 and
InceptionV3 models in onion variety identification. The
reliability of DenseNet121 stems from its dense connectivity
architecture, where each layer receives inputs from all
preceding layers. This feature allows the model to reuse
features effectively, promoting better gradient flow and
mitigating the vanishing gradient problem (Peng et al.,
2024; Sangeetha et al,, 2024). Additionally, it enables the
model to capture intricate details and patterns in the
dataset, which is crucial for distinguishing visually similar
onion varieties. The performance of the Xception model
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Fig. 3: Training and validation accuracy and loss of four different CNN models

for onion variety identification raises questions about its
effectiveness and reliability compared with DenseNet121
and MobileNetV2. The tendency to produce false positives
poses significant challenges in practical applications like
onion sorting and grading, as it can result in costly errors.
Moreover, the Xception model’s low precision, recall and

F1 score highlight its difficulty in effectively capturing the
unique characteristics of various onion varieties.
DenseNet121 emerged as the most balanced model,
excelling in accuracy, recall and reliability, making it well-
suited for applications requiring robust classification
performance. MobileNetV2, with its minimal prediction
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errors, proved highly effective for scenarios prioritizing error
minimization and computational efficiency. InceptionV3
offered a strong balance between accuracy and reliability,
while Xception showed the need for further optimization
to enhance predictive consistency. Future work could
explore hyperparameter tuning and dataset augmentation
to further improve model performance. However, the
dataset structure plays a crucial role in evaluating model
efficiency. This study focused on images from rabi-
harvested produce. Expanding the dataset to include
produce from kharif, late-kharif and rabi seasons would
provide a more comprehensive understanding of seasonal
and spatial variability. Additionally, the limited dataset
size and storage duration used in this study may have

restricted the models’ ability to capture diverse features.
This classification framework has potential real-world
applications in automated grading systems, mobile-based
varietal verification for farmers, and digital traceability tools
for seed certification agencies and traders.

This study demonstrates promising results using a
Limitations dataset of 10 onion varieties; it does not yet
account for environmental and seasonal variability. All
images were collected from rabi-harvested produce
at a single location, which may limit generalizability.
Additionally, certain visually similar varieties, such as Bhima
Shweta and Bhima Shubhra, were frequently misclassified
by some models, indicating the need for higher intra-class
resolution. Further, the image dataset lacks samples across
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different storage durations or physiological ages, which
could affect model robustness. These limitations point to the
need for multi-season data and larger varietal representation
in future studies.

Conclusion

Onion is a crop of immense importance and a dominant
player in the international market among agricultural
commodities. Accurate identification of onion varieties
is crucial for pricing, quality assurance and consumer
preference. Artificial intelligence (Al) and Machine Learning
(ML) offers a superior alternative to the faulty and dubious
methods of visual examination and individual perception
in image classification tasks, achieving high accuracy and
precision. This study establishes the feasibility of using
deep learning models for the classification of Indian onion
varieties based on bulb images. Among the models tested,
DenseNet121 demonstrated the highest reliability and
performance, owing to its dense connectivity and efficient
feature extraction. The exclusion of state-of-the-art (SOTA)
models was intentional, as their higher complexity and
data requirements could lead to overfitting and would not
be justified at this exploratory stage. The chosen models
are efficient, well-established and appropriate for small
datasets, allowing for a reliable baseline assessment. These
findings support the potential of computer vision tools in
enhancing the accuracy and speed of varietal identification,
with direct applications in grading, sorting and quality
assurance systems. Given the diversity of onion cultivars
and environmental conditions across India, future research
should include expanded datasets covering multiple
growing seasons, storage durations and a wider range
of varieties. Incorporating more advanced architectures,
such as Vision Transformers or ensemble models, may
further enhance classification accuracy. This work lays the
foundation for building scalable, Al-driven platforms for
onion variety verification in breeding, seed certification and
supply chain management.
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