Vegetable Science (2025) 52(1): 191-195

doi: 10.61180/vegsci.2025.v52.i1.26

ISSN- 0970-6585 (Print), ISSN- 2455-7552 (Online)

RESEARCH ARTICLE

Efficacy of novel insecticides and bio-pesticides for diamond back moth (*Plutella xylostella*) management in cabbage

JK Choudhary¹, Akhilesh Kumar^{1*}, TK Singh², Rajesh Singh³, Manju Shukla³, Smita Singh³, VK Singh² and SK Tripathi⁴

Abstract

The experiment was carried out at the Instructional Farm of JNKVV-College of Agriculture, Rewa (M.P), during the *Rabi* season 2020-2021 on cabbage. The experiment was laid out in a Randomized Block Design with nine treatments, including Chlorantraniliprole 18.5 SC at 10 g a.i./ha, Fipronil 5% SC @ 40 g a.i./ha, Indoxacarb 14.5 SC @ 40 g a.i./ha, Spinosad 45 SC @ 100 g a.i./ha, Novaluron 10 EC @ 75 g a.i./ha, Emamectine benzoate 5 SG @ 10 g a.i./ha, Neem oil 0.15% @ 4.5 g a.i./ha , Bt 5% WP @ 25 g a.i./ha and untreated control and three replications against diamondback moth two sprays of insecticide were done at 15 and 35 days after transplanting of the crop. The effect of insecticide was recorded on 3, 7, 10 and 15 days after the insecticide. The mean population of DBM after two sprays showed that Spinosad 45 SC proved to be the most effective and superior treatment, recording the lowest population of DBM (0.55 larvae/plant). The order of efficacy of insecticides was found in order T4 (Spinosad 45 SC) > T1 (Chlorantraniliprole 18.5 SC) > T6 Emamectin benzoate > T3 (Indoxacarb 14.5 SC) > T2 (Fipronil 5% SC) > T5 (Novaluron 10 EC) > T8 (Bt 5% WP) > T7 (Neem oil 0.15%). The untreated control recorded a maximum DBM larval population (3.35 larvae/plant). Resulting in the head yield 320.00 q/ha Spinosad 45 SC @ 100 g a.i./ha with maximum C:B ratio (1:21.31) was recorded from Chlorantraniliprole 18.5 SC treatment followed by Indoxacarb 14.5 SC (1:18.20).

Keywords: Cabbage, DBM, Insecticides, Biopesticides, Economics.

 $^{1} Department of Entomology, JNKVV-College of Agriculture, Rewa, Madhya Pradesh, India. \\$

²Department of Horticulture, JNKVV-College of Agriculture, Rewa, Madhya Pradesh, India.

³JNKVV-KVK, College of Agriculture, Rewa, Madhya Pradesh, India. ⁴Department of Plant Pathology, JNKVV-College of Agriculture, Rewa, Madhya Pradesh, India.

*Corresponding author; Email: akhiliivr@gmail.com

Citation: Choudhary, J.K., Kumar, A., Singh, T.K., Singh, R., Shukla, M., Singh, S., Singh, V.K., & Tripathi, S.K. (2025). Efficacy of novel insecticides and bio-pesticides for diamondback moth (*Plutella xylostella*) management in cabbage. Vegetable Science 52 (1): 191-195.

Source of support: Nil Conflict of interest: None.

Received: 05/09/2024 Revised: 22/02/2025 Accepted: 01/05/2025

Introduction

The diamondback moth, Plutella xylostella (L.), presents one of the greatest threats to crucifer production in many parts of the world. In recent years, crucifer production in tropical and subtropical regions has been significantly impacted by populations that have developed resistance to a wide range of insecticides (Tabashnik et al. 1990; Shelton et al. 1993). It primarily attacks crops of the cruciferous family, including cabbage, rape, broccoli, cauliflower, and Chinese cabbage. The damage is caused by its larvae, which skeletonize the foliage of the host plant and render it unfit for consumption. Among the pest complex of cabbage, diamondback moth (P. xylostella Linn.) is the most destructive insect pest. Kumar et al. (1983) reported 52 percent losses in the marketable yield of cabbage due to infestation by P. xylostella. The diamondback moth (DBM), P. xylostella (Lepidoptera: Plutellidae), is a serious pest of great economic importance worldwide.

Cabbage, *Brassica oleracea* var. capitata L. is one of the important cruciferous vegetable crops grown in India. The total area under cultivation of cabbage in India is 3.9 lakh hectares, with an annual production of 1.0 million tonnes and a productivity of 9037 metric tons (Anonymous, 2018). The position of Madhya Pradesh in Cabbage production is

[©] The Author(s) 2025. Open Access. This article is Published by the Indian Society of Vegetable Science, Indian Institute of Vegetable Research, Jakhini, Varanasi-221305, Uttar Pradesh, India; Online management by www.isvsvegsci.in

3rd. Cabbage area and production are respectively 889.74 ha and 686.91 MT (2017-18) in Madhya Pradesh. Cabbage is a great source of calcium, potassium, and vitamin C (Hasan and Solaiman, 2012). The crop has a cooling effect, aids in reducing constipation, increases appetite, speeds up digestion, and is particularly beneficial for diabetic people (Yadav et al., 2000). The aim of the present study was to investigate the efficacy of novel insecticides and biopesticides against the management of Diamondback moth in cabbage, assessing their economic feasibility.

Materials and Methods

The experiment was conducted at the Instructional Farm, College of Agriculture, Rewa (M.P.) during the Rabi season 2020-2021. The cabbage field was studied on variety CLX 3945 by raising crops following the recommended package of practices with plant spacing of 50 × 50 cm with plot size 3 $m \times 2.5$ m. The incidence of *P. xylostella* was observed from five randomly selected plants from three middle rows of each plot. The spray of insecticides was applied as soon as the pest incidence was noted. The first spray was applied using a knapsack sprayer at the site of insect incidence on the crop and repeated after 15 days. Pre-treatment observation on pest population was undertaken one day before the application of the first spray by direct counting of P. xylostella larvae per five randomly pre-selected plants in each plot. A similar procedure was followed for posttreatment observation, which was recorded at 3, 7, 10, and 15 days after both spray operations. The efficacy of new molecule of insecticides viz., Chlorantraniliprole 18.5 SC, Fipronil 5% SC, Indoxacarb 14.5 SC, Spinosad 45 SC, Novaluron 10 EC, Emamectin benzoate 5 SG, Bt and Neem oil, were compared with untreated control plot against the cabbage diamondback moth (P. xylostella).

The data were analyzed according to the experimental design to test the significance of the treatment. The data obtained on the number of insects were transformed to square root ($\sqrt{x}+0.5$) for the statistical analysis. Cabbage yields in different treatments were recorded per plot and then converted to yield in q/ha.

Gross return was calculated by multiplying the total yield by the market price of the product. The cost of cultivation and cost of treatment imposition were deducted from the gross returns to find out net returns and cost-benefit ratio by following the formula:

Where, B: C = Benefit Cost Ratio Grain yield

Yield was calculated under different treatments as per formula.

Yield / ha = Factor x grain yield / plot

Results and Discussion

Efficacy of novel insecticides and biopesticides against the diamondback moth (*P. xylostella*)

All insecticides were found to be very effective and significantly superior to the untreated control. However, T4 and T1 (Spinosad 45 SC and Chlorantraniliprole 18.5 SC, respectively) were the best among them. (Table 1 & 2). Eight insecticides, namely Chlorantraniliprole 18.5 SC, Fipronil 5% SC, Indoxacarb 14.5 SC, Spinosad 45 SC, Novaluron 10 EC, Emamectin benzoate 5 SG, Bt, and Neem oil, were evaluated against DBM following two applications of insecticide spray at 15 days and 35 days after cabbage transplanting. The

Table 1: Efficacy of different insecticide	treatments against nonulation	of Diamondhack moth during	ng Rahi season 2021
Table 1. Lineacy of different insections	ti cati ilciits adaii ist bobulatioi i	OI DIAITIOHADACK HIOUH AUTH	iu nabi scasoni zoz i

Insecticides	Dosage	DBM larvae per p	olant First spray Af	ter treatment			— Maan
insecticides	g or ml a.i./ha	Pre-count	3DAT	7DAT	10DAT	15DAT	— Mean
Chlorantraniliprole 18.5 SC	10	2.46 (1.72)	1.06 (1.25)	0.87 (1.17)	0.6 (1.17)	0.93 (1.19)	0.85 (1.16)
Fipronil 5% SC	40	2.2 (1.64)	1.53 (1.42)	1.2 (1.30)	0.8 (1.30)	1.2 (1.30)	1.18 (1.29)
Indoxacarb 14.5 SC	40	2.33 (1.68)	1.27 (1.33)	1.13 (1.28)	0.73 (1.28)	1.06 (1.25)	1.05 (1.24)
Spinosad 45 SC	100	2.6 (1.76)	1 (1.22)	0.67 (1.08)	0.53 (1.08)	0.8 (1.14)	0.75 (1.11)
Novaluron 10 EC	75	2.13 (1.62)	1.53 (1.42)	1.27 (1.33)	0.87 (1.33)	1.27 (1.33)	1.22 (1.31)
Emamectin benzoate 5 SG	10	2.13 (1.62)	1.13 (1.28)	0.93 (1.19)	0.67 (1.08)	1 (1.22)	0.92 (1.19)
Neem oil 0.15%	4.5	2.33 (1.68)	1.73 (1.49)	1.53 (1.42)	1 (1.42)	1.6 (1.45)	1.465 (1.4)
Bacillus thuringiensis 5% WP	25	2.2 (1.64)	1.67 (1.47)	1.33 (1.35)	0.93 (1.35)	1.4 (1.38)	1.33 (1.35)
Untreated check	-	2.4 (1.7)	2.53 (1.74)	2.93 (1.85)	2.93 (1.85)	3 (1.87)	2.85 (1.83)
SEm ± CD at 5%		0.23	0.1	0.07	0.09	0.11	
JLIII ± CD at 370		NS	0.31	0.22	0.3	0.34	

^{*} Figures in parentheses are x + 0.5 transformed values

Table 2: Efficacy of different insecticides against population of Diamond back moth during Rabi season 2021

_		Dosage g	_	DBM larvae p	er plant Second	spray after tred	atment	
Treatment	Insecticides	or ml a.i./ha	Pre- count	3DAT	7DAT	10DAT	15DAT	[—] Mean
T ₁	Chlorantraniliprole 18.5 SC	10	1.6 (1.45)	1 (1.22)	0.73 (1.11)	0.47 (0.98)	0.33 (0.91)	0.67 (1.08)
T_2	Fipronil 5% SC	40	2 (1.58)	1.67 (1.47)	1 1.22)	0.73 (1.11)	0.53 (1.01)	0.98 (1.22)
T ₃	Indoxacarb 14.5 SC	40	1.87 (1.54)	1.53 (1.42)	0.93 (1.19)	0.67 (1.08)	0.47 (0.98)	0.9 (1.18)
$T_{_{4}}$	Spinosad 45 SC	100	1.53 (1.42)	0.87 (1.17)	0.67 (1.08)	0.4 (0.94)	0.27 (0.88)	0.55 (1.02)
T ₅	Novaluron 10 EC	75	2.2 (1.64)	1.73 (1.49)	1.06 (1.25)	0.8 (1.14)	0.6 (1.05)	1.05 (1.24)
T ₆	Emamectin benzoate 5 SG	10	1.73 (1.49)	1.06 (1.25)	0.8 (1.14)	0.6 (1.04)	0.4 (0.95)	0.71 (1.1)
T ₇	Neem oil 0.15%	4.5	2.33 (1.68)	1.8 (1.52)	1.2 (1.30)	0.87 (1.17)	0.73 (1.11)	1.15 (1.28)
T ₈	Bacillus thuringiensis 5% WP	25	2.4 (1.70)	1.73 (1.49)	1.13 (1.28)	0.8 (1.14)	0.67 (1.08)	1.08 (1.26)
T ₉	Untreated check	-	3.67 (2.04)	4.33 (2.19)	3.6 (2.02)	2.93 (1.85)	2.53 (1.74)	3.35 (1.96)
	SEm±		0.14	0.08	0.11	0.1	0.11	
	CD at 5%		0.44	0.23	0.34	0.31	0.33	

^{*}Figures in parentheses are transformed values

observations were recorded at 3, 7, 10 and 15 days after each spray, along with the respective pre-count population. The Diamondback moth population count in this treatment was recorded between 1 to 1.73 larvae per plant in all the insecticide treatment plots as against control (2.53 larvae per plant).

However, after 7 and 10 days after treatment again, insecticides were found to be significantly superior over untreated control in reducing the larval population of the pest, with the diamondback moth population range 0.67 to 1.53 larvae per plant noted in all the insecticidetreated plots. In contrast, in the control plot 2.93 larvae per plant were recorded 7 days after. The population of diamondback moth varied between 0.53 and 1 larvae per plant in various insecticide treatments, as compared to the control (2.93 larvae per plant), which was recorded 10 days after treatment. Here, Spinosad 45 SC also proved superior, with a reduction in the diamondback moth population to the extent of 0.53 larvae per five plants. T4 (Spinosad 45 SC) > T1(Chlorantraniliprole 18.5 SC) >T6 (Emamectin benzoate 5 SG) >T3(Indoxacarb 14.5 SC) >T2 (Fipronil 5% SC) > T5(Novaluron 10 EC) > T8 (Bt 5% WP) > T7 (Neem oil 0.15%).

In the case of the second spray of insecticides, Spinosad 45 SC was again superior to the rest of the treatments, and all insecticides were found to be very effective and significantly superior to the control. A diamondback moth population range of 0.87 to 1.8 larvae per plant was noted in all insecticide-treated plots. In contrast, in the control plot 4.33 larvae per plant were recorded 3 days after. The population of diamondback moths varied between 0.67 and 1.2 larvae per plant in various insecticide treatments,

as compared to the control (3.60 per plant), which was recorded 7 days after treatment. After 15 days of treatments, the population of diamondback moths varied between 0.27 and 0.73 larvae per plant. The effectiveness of these treatments application was found in order T4 (Spinosad 45 SC) > T1 (Chlorantraniliprole 18.5 SC) > T6 (Emamectin benzoate 5 SG)>T3 (Indoxacarb 14.5 SC) >T2 (Fipronil 5% SC) > T5 (Novaluron 10 EC) >T8 (Bt 5% WP) > T7 (Neem oil 0.15%). Dotasara et al. (2017), Nikam et al. (2014), and Shivaling aswamy et al. (2006) also reported the effectiveness of Spinosad against this pest, observing better efficacy of Spinosad against DBM. Some workers also observed the effectiveness of Indoxacarb, Chlorantraniliprole, Bt, and Emamectin benzoate to be better than that of the untreated plot (Kumar et al., 2007; Rai et al., 2007; Shivalingaswamy et al., 2008; Kumar et al., 2014; Kumar et al., 2017).

Effect on cabbage yield

Yield data presented in Table 3, indicates an increase in the yield of cabbage after the spray of insecticides. The highest yield of 320 Q/ha was recorded in the plot treated with Spinosad 45 SC (T4), which was significantly similar to the at-par treatments, viz. T1 (Chlorantraniliprole 18.5 SC) and T6 (Emamectin benzoate 5 SG) recorded a yield of 298 and 293.06 Q/ha, respectively. While the lowest yield of 200.93 Q/ha was recorded from the control plot. Among the treatments, Neem oil 0.15% (T7) recorded the lowest yield of 220.93 Q/ha. The order of yield (kg/ha) in various treatments was found as: T4 (Spinosad 45 SC) > T1 (Chlorantraniliprole 18.5 SC) > T6 (Emamectin benzoate 5 SG) > T3(Indoxacarb 14.5 SC) > T2 (Fipronil 5% SC) > T5 (Novaluron 10 EC) > T8

 Table 3: Effect of different insecticide sprays on the economics of the cabbage diamondback moth

)	Dosage	Average Yield	Additional yield	% wield	Gross monetary return	Protection cost	Net return due	
S. No	Treatments	Insecticides	mL/ga. i./ha	(Q/ha)	over control (Q/ ha)	increased	due to treatment** (Rs./ ha)	for 2 sprays* (Rs./ha)	to treatments (Rs./ha)	C:B ratio
-	⊢ ⁻	Chlorantraniliprole 18.5 SC	10	298	97.07	48.31	97067.00	2960	94107.00	1:21.31
7	_ ح	Fipronil 5% SC	40	252.4	51.47	25.61	51467.00	3875	47592.00	1:8.86
м	۳ [°]	Indoxacarb 14.5 SC	40	284.933	84.00	41.80	84000.00	3850	80150.00	1:18.20
4	Γ ₄	Spinosad 45 SC	100	320	119.07	59.26	119067.00	5470	113597.00	1:12.23
2	Ľ [°]	Novaluron 10 EC	75	248.933	48.00	23.89	48000.00	4721	43279.20	1:5.40
9	Ľ	Emamectin benzoate 5 SG	10	293.067	92.13	45.85	92134.00	8501	83633.25	1:17.43
7		Neem oil 0.15%	4.5	220.933	20.00	9.95	20000.00	4500	15500.00	1:2.51
œ	⊢ [®]	Bacillus thuringiensis 5% WP	25	230	29.07	14.47	29067.00	7000	22067.00	1:7.32
6	⊢ °	Untreated check	1	200.933						1
	SEm±			0.03	,	,		1		1
	CD at 5%			0.10	1	1	ı	1	1	1

*Protection cost for 2 sprays: Labour charge = Rs 2500; Knapsack hiring = Rs 500
Cost of insecticides used for treatment: Chlorantraniliprole 18.5 SC = Rs 13500 /lit, Fipronil 5% SC = Rs 1388 /Kg, Indoxacarb 14.5 SC = Rs 2500 /lit, Spinosad 45 SC = Rs 13335 /lit, Novaluron 10 EC = Rs 3000 /lit, Emamectin benzoate 5 SG = Rs 5000 /lit, Neem oil 0.15% = Rs 450 /lit, Bacillus thuringiensis 5% WP = Rs 495 /lit.

(Bacillus thuringiensis 5% WP) > T7 (Neem oil 0.15%) > T9 (Control).

The cost-benefit ratio

The C:B ratio of various insecticidal treatments against cabbage diamondback moth was calculated and presented in Table 3, which divulge that maximum C:B ratio (1:21.31) was recorded from Chlorantraniliprole 18.5 SC (T1) treatment followed by Indoxacarb 14.5 SC (T3) (1:18.20), Emamectin benzoate 5 SG (T6) (1:17.43), Spinosad 45 SC (T4) (1:12.23), Fipronil 5% SC (T2) (1:8.26), Bt 5% WP (T8) (1:7.32), Novaluron 10 EC (T5) (1:5.40) and Neem oil 0.15% (T7) (1:2.51).

References

- Anonymous (2018) Horticulture statistics a glance 2018. Ministry of agriculture and farmers' welfare. Department of agriculture, cooperation and farmers' welfare horticulture statistics division Pp. 10-11.
- Dotasara, S.K., Agrawal, N., Singh, N. & Swami, D. (2017). Efficacy of Some New Insecticides against Diamond Back Moth (*Plutella xylostella* L.) on cauliflower. International Journal of Current Microbiology & Applied Sciences, 6,1958-1963.
- Hasan, M.R. & Solaiman, A.H.M. (2012). Efficacy of organic and inorganic fertilizer on the growth of cabbage. International Journal of Agriculture and Crop Sciences, 4, 128-138.
- Kumar, A., Pandey, A.K., Singh, R. & Baghel, K.S. (2017). Assessment of Rynaxypyr 18.5 SC and economic analysis in the management of Okra shoot and fruit borer. Bhartiya Krishi Anusandhan Patrika, 32, 196-197.
- Kumar, A., Satpathy, S., Shivalingaswamy, T.M. & Rai, M. (2007). Field efficacy of Indoxacarb against diamondback moth, *Plutella xylostella* L. on cabbage. Pestology, 31, 41-43.

- Kumar, A., Singh, M., Sharma, A., Negi, R. & Baghel, K.S. (2014). Assessment of Bt against Diamondback moth (DBM), *Plutella xylostella* L.16th Indian Agricultural Scientist and Farmers Congress held on February 22-23, 2014 at Integral University, Lucknow. pp. 68-69.
- Nikam, T.A, Chandele, A.G., Gade, R.S. & Gaikwad, S.M. (2014). Efficacy of chemical insecticides against diamond back moth, *Plutella xylostella* L. on cabbage under field condition. Trends in Biosciences, 7, 1196-1199.
- Rai, A.B., Kumar, A., Satpathy, S., Shivalingaswamy, T.M., & Rai, M. (2007). Efficacy of indoxacarb 15 EC in the control of diamondback moth, *Plutella xylostella* L. in cabbage. Vegetable Science, 34, 160-162.
- Shelton, A.M. (2004). Management of the diamondback moth: deja vu all over again? In: Endersby NM, Ridland PM (eds) The management of diamondback moth and other crucifer pests, pp 3–8. Proceedings of the fourth international workshop Diamondback moth, 26–29 November 2001, Melbourne, Australia.
- Shivalingaswamy, T.M., Kumar, A., Satpathy, S., & Rai, A.B. (2008). Efficacy of emamectin benzoate in the management of vegetable pests. Progressive Horticulture, 40, 193-197.
- Shivalingaswamy, T.M., Kumar, A., Satpathy, S., Rai, A.B. & Rai, M. (2006). Spinosad: a new molecule for management of diamondback moth (*Plutella xylostella* L.) in cauliflower. Vegetable Science, 33, 55-57.
- Tabashnik, B.E., Cushing, N.L., Finson, N., & Johnson, M.W. (1990). Field development of resistance to *Bacillus thuringiensis* in diamond back moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 83, 1671-1676.
- Yadav, R.L., Dhaka, R.S., & Fageria, M.S. (2000). Effect of GA3, NAA and succinic acid on growth and yield of cabbage cv. Golden Acre. Haryana Journal of Horticulture Sciences, 20, 269-270.

सारांश

यह प्रयोग जेएनकेवीवी-कृशि महाविद्यालय, रीवा (म.प्र.) के इंस्ट्रक्षनल फार्म में रबी सीजन 2020-2021 के दौरान गोभी पर किया गया था। यह प्रयोग 09 उपचारों के साथ रैंडमाइज्ड ब्लॉक डिजाइन में किया गया था, क्लोरेंट्रानिलिप्रोल 18.5 एस सी / 10 ग्राम ए. आई. ध्हेक्टेयर, फिप्रोनिल 5: एससी / 40 ग्राम ए. आई. ध्हेक्टेयर, इंडोक्साकार्ब 14ण्5 एस सी / 40 ग्राम ए. आई. ध्हेक्टेयर, सिनोसैड 45 एस सी / 100 ग्राम ए. आई. ध्हेक्टेयर, नोवलूरॉन 10 ईसी / 75 ग्राम ए. आई. ध्हेक्टेयर, इमामेक्टिन बेंजोएट 5 एस जी / 10 ग्राम ए. आई. ध्हेक्टेयर, नीम तेल 0.15: / 4.5 ग्राम ए. आई. ध्हेक्टेयर, बीटी 5: डब्ल्यूपी / 25 ग्राम ए. आई. ध्हेक्टेयर, और अनुपचारित नियंत्रण और डायमंड बैक मॉथ के विरुद्ध तीन प्रतिकृतियां फसल की रोपाई के 15 और 35 दिन बाद कीटनाषक के दो छिड़काव किए गए। कीटनाषक का प्रभाव कीटनाषक के 3, 7, 10 और 15 दिन बाद दर्ज किया गया। दो स्प्रे के डीबीएम की औसत जनसंख्या से पता चला कि स्पिनोसैड 45 एस सी बाकी उपचारों की तुलना में सबसे प्रभावी और बेहतर साबित हुआ और डीबीएम (0.55 लार्वा ध् पौधा) की सबसे कम संख्या दर्ज की गई। कीटनाषकों की प्रभावकारिता का क्रम टी4 (स्पिनोसैड 45 एससी) झ टी1 (क्लोरैंट्रानिलिप्रोल 18.5 एससी) झ टी6 इमामेक्टिन बेंजोएट झ टी3 (इंडोक्साकार्ब 18.5 एससी) झ टी2 (फिप्रोनिल 5: एससी) झ टी5 (नोवलूरॉन 10 ईसी) झ टी8 (बैसिलस थुरिंगिएन्सिस 5: डब्लूपी) झ टी7 (नीम तेल) 0.15:). अनुपचारित नियंत्रण में अधिकतम डीबीएम लार्वा जनसंख्या (3.35 लार्वाध्योधा) दर्ज की गई। अधिकतम सी:बी अनुपात (1:21.31) के साथ क्लेटियर दर्ज की गई।